Title:
|
A shape optimization approach for a class of free boundary problems of Bernoulli type (English) |
Author:
|
Boulkhemair, Abdesslam |
Author:
|
Nachaoui, Abdeljalil |
Author:
|
Chakib, Abdelkrim |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
58 |
Issue:
|
2 |
Year:
|
2013 |
Pages:
|
205-221 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We are interested in an optimal shape design formulation for a class of free boundary problems of Bernoulli type. We show the existence of the optimal solution of this problem by proving continuity of the solution of the state problem with respect to the domain. The main tools in establishing such a continuity are a result concerning uniform continuity of the trace operator with respect to the domain and a recent result on the uniform Poincaré inequality for variable domains. (English) |
Keyword:
|
shape optimization |
Keyword:
|
Bernoulli |
Keyword:
|
free boundary problem |
Keyword:
|
exterior Bernoulli problem |
Keyword:
|
optimal solution |
Keyword:
|
state problem |
Keyword:
|
continuity of the state problem |
Keyword:
|
uniform tubular neighbourhood |
Keyword:
|
diffeomorphism |
Keyword:
|
uniform trace theorem |
Keyword:
|
uniform Poincaré inequality |
MSC:
|
35J05 |
MSC:
|
35J20 |
MSC:
|
35J25 |
MSC:
|
35Qxx |
MSC:
|
49-xx |
idZBL:
|
Zbl 1274.35062 |
idMR:
|
MR3034822 |
DOI:
|
10.1007/s10492-013-0010-x |
. |
Date available:
|
2013-03-01T15:55:08Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143163 |
. |
Reference:
|
[1] Acker, A.: An extremal problem involving current flow through distributed resistance.SIAM J. Math. Anal. 12 169-172 (1981). Zbl 0456.49007, MR 0605427, 10.1137/0512017 |
Reference:
|
[2] Acker, A., Meyer, R.: A free boundary problem for the $p$-Laplacian: uniqueness, convexity, and successive approximation of solutions.Electron. J. Differ. Equ. 8 1-20 (1995). Zbl 0820.35037 |
Reference:
|
[3] Alt, H. W., Caffarelli, L. A.: Existence and regularity for a minimum problem with free boundary.J. Reine Angew. Math. 325 105-144 (1981). Zbl 0449.35105, MR 0618549 |
Reference:
|
[4] Beurling, A.: On free-boundary problems for the Laplace equations.Sem. analytic functions 1 248-263 (1958). Zbl 0099.08302 |
Reference:
|
[5] Boulkhemair, A., Chakib, A.: On the uniform Poincaré inequality.Commun. Partial Differ. Equations 32 1439-1447 (2007). Zbl 1128.26010, MR 2354499, 10.1080/03605300600910241 |
Reference:
|
[6] Boulkhemair, A., Chakib, A., Nachaoui, A.: Uniform trace theorem and application to shape optimization.Appl. Comput. Math. 7 192-205 (2008). Zbl 1209.49060, MR 2537339 |
Reference:
|
[7] Cardaliaguet, P., Tahraoui, R.: Some uniqueness results for Bernoulli interior free-boundary problems in convex domains.Electron. J. Differ. Equ. 102 1-16 (2002). Zbl 1029.35227, MR 1949576 |
Reference:
|
[8] Chenais, D.: On the existence of a solution in a domain identification problem.J. Math. Anal. Appl. 52 189-219 1975. Zbl 0317.49005, MR 0385666, 10.1016/0022-247X(75)90091-8 |
Reference:
|
[9] Crouzeix, M.: Variational approach of a magnetic shaping problem.Eur. J. Mech, B 10 527-536 (1991). Zbl 0741.76089, MR 1139607 |
Reference:
|
[10] Descloux, J.: Stability of the solutions of the bidimensional magnetic shaping problem in absence of surface tension.Eur. J. Mech, B 10 513-526 (1991). Zbl 0741.76025, MR 1139606 |
Reference:
|
[11] Fasano, A.: Some free boundary problems with industrial applications.Shape optimization and free boundaries, Proc. NATO ASI, Sémin. Math. Supér., Montréal/Can. 1990 113-142 (1992). Zbl 0765.76005, MR 1260974 |
Reference:
|
[12] Flucher, M., Rumpf, M.: Bernoulli's free-boundary problem, qualitative theory and numerical approximation.J. Reine Angew. Math. 486 165-205 (1997). Zbl 0909.35154, MR 1450755 |
Reference:
|
[13] Friedman, A.: Free boundary problem in fluid dynamics, variational methods for equilibrium problems of fluids.Astérisque 118 55-67 (1984). MR 0761737 |
Reference:
|
[14] Haslinger, J., Kozubek, T., Kunisch, K., Peichl, G.: Shape optimization and fictitious domain approach for solving free boundary problems of Bernoulli type.Comput. Optim. Appl. 26 231-251 (2003). Zbl 1077.49030, MR 2013364, 10.1023/A:1026095405906 |
Reference:
|
[15] Haslinger, J., Kozubek, T., Kunisch, K., Peichl, G.: An embedding domain approach for a class of 2-d shape optimization problems: Mathematical analysis.J. Math. Anal. Appl. 290 665-685 (2004). Zbl 1034.49042, MR 2033050, 10.1016/j.jmaa.2003.10.038 |
Reference:
|
[16] Henrot, A., Pierre, M.: Variation and Optimization of Formes. A Geometric Analysis. (Variation et optimisation de formes. Une analyse géométrique.) Mathématiques & Applications 48.Springer Berlin (2005), French. MR 2512810, 10.1007/3-540-37689-5 |
Reference:
|
[17] Ito, K., Kunisch, K., Peichl, G.: Variational approach to shape derivatives for a class of Bernoulli problems.J. Math. Anal. Appl. 314 126-149 (2006). Zbl 1088.49028, MR 2183542, 10.1016/j.jmaa.2005.03.100 |
Reference:
|
[18] Kinderlehrer, D., Nirenberg, L.: Regularity in free boundary problems.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 4 373-391 (1977). Zbl 0352.35023, MR 0440187 |
Reference:
|
[19] Lewy, H.: A note on harmonic functions and a hydrodynamical application.Proc. Am. Math. Soc. 3 111-113 (1952). Zbl 0046.41706, MR 0049399, 10.1090/S0002-9939-1952-0049399-9 |
Reference:
|
[20] Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer Series in Computational Physics.Springer New York (1984). MR 0725856 |
. |