Previous |  Up |  Next

Article

Title: A shape optimization approach for a class of free boundary problems of Bernoulli type (English)
Author: Boulkhemair, Abdesslam
Author: Nachaoui, Abdeljalil
Author: Chakib, Abdelkrim
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 58
Issue: 2
Year: 2013
Pages: 205-221
Summary lang: English
.
Category: math
.
Summary: We are interested in an optimal shape design formulation for a class of free boundary problems of Bernoulli type. We show the existence of the optimal solution of this problem by proving continuity of the solution of the state problem with respect to the domain. The main tools in establishing such a continuity are a result concerning uniform continuity of the trace operator with respect to the domain and a recent result on the uniform Poincaré inequality for variable domains. (English)
Keyword: shape optimization
Keyword: Bernoulli
Keyword: free boundary problem
Keyword: exterior Bernoulli problem
Keyword: optimal solution
Keyword: state problem
Keyword: continuity of the state problem
Keyword: uniform tubular neighbourhood
Keyword: diffeomorphism
Keyword: uniform trace theorem
Keyword: uniform Poincaré inequality
MSC: 35J05
MSC: 35J20
MSC: 35J25
MSC: 35Qxx
MSC: 49-xx
idZBL: Zbl 1274.35062
idMR: MR3034822
DOI: 10.1007/s10492-013-0010-x
.
Date available: 2013-03-01T15:55:08Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143163
.
Reference: [1] Acker, A.: An extremal problem involving current flow through distributed resistance.SIAM J. Math. Anal. 12 169-172 (1981). Zbl 0456.49007, MR 0605427, 10.1137/0512017
Reference: [2] Acker, A., Meyer, R.: A free boundary problem for the $p$-Laplacian: uniqueness, convexity, and successive approximation of solutions.Electron. J. Differ. Equ. 8 1-20 (1995). Zbl 0820.35037
Reference: [3] Alt, H. W., Caffarelli, L. A.: Existence and regularity for a minimum problem with free boundary.J. Reine Angew. Math. 325 105-144 (1981). Zbl 0449.35105, MR 0618549
Reference: [4] Beurling, A.: On free-boundary problems for the Laplace equations.Sem. analytic functions 1 248-263 (1958). Zbl 0099.08302
Reference: [5] Boulkhemair, A., Chakib, A.: On the uniform Poincaré inequality.Commun. Partial Differ. Equations 32 1439-1447 (2007). Zbl 1128.26010, MR 2354499, 10.1080/03605300600910241
Reference: [6] Boulkhemair, A., Chakib, A., Nachaoui, A.: Uniform trace theorem and application to shape optimization.Appl. Comput. Math. 7 192-205 (2008). Zbl 1209.49060, MR 2537339
Reference: [7] Cardaliaguet, P., Tahraoui, R.: Some uniqueness results for Bernoulli interior free-boundary problems in convex domains.Electron. J. Differ. Equ. 102 1-16 (2002). Zbl 1029.35227, MR 1949576
Reference: [8] Chenais, D.: On the existence of a solution in a domain identification problem.J. Math. Anal. Appl. 52 189-219 1975. Zbl 0317.49005, MR 0385666, 10.1016/0022-247X(75)90091-8
Reference: [9] Crouzeix, M.: Variational approach of a magnetic shaping problem.Eur. J. Mech, B 10 527-536 (1991). Zbl 0741.76089, MR 1139607
Reference: [10] Descloux, J.: Stability of the solutions of the bidimensional magnetic shaping problem in absence of surface tension.Eur. J. Mech, B 10 513-526 (1991). Zbl 0741.76025, MR 1139606
Reference: [11] Fasano, A.: Some free boundary problems with industrial applications.Shape optimization and free boundaries, Proc. NATO ASI, Sémin. Math. Supér., Montréal/Can. 1990 113-142 (1992). Zbl 0765.76005, MR 1260974
Reference: [12] Flucher, M., Rumpf, M.: Bernoulli's free-boundary problem, qualitative theory and numerical approximation.J. Reine Angew. Math. 486 165-205 (1997). Zbl 0909.35154, MR 1450755
Reference: [13] Friedman, A.: Free boundary problem in fluid dynamics, variational methods for equilibrium problems of fluids.Astérisque 118 55-67 (1984). MR 0761737
Reference: [14] Haslinger, J., Kozubek, T., Kunisch, K., Peichl, G.: Shape optimization and fictitious domain approach for solving free boundary problems of Bernoulli type.Comput. Optim. Appl. 26 231-251 (2003). Zbl 1077.49030, MR 2013364, 10.1023/A:1026095405906
Reference: [15] Haslinger, J., Kozubek, T., Kunisch, K., Peichl, G.: An embedding domain approach for a class of 2-d shape optimization problems: Mathematical analysis.J. Math. Anal. Appl. 290 665-685 (2004). Zbl 1034.49042, MR 2033050, 10.1016/j.jmaa.2003.10.038
Reference: [16] Henrot, A., Pierre, M.: Variation and Optimization of Formes. A Geometric Analysis. (Variation et optimisation de formes. Une analyse géométrique.) Mathématiques & Applications 48.Springer Berlin (2005), French. MR 2512810, 10.1007/3-540-37689-5
Reference: [17] Ito, K., Kunisch, K., Peichl, G.: Variational approach to shape derivatives for a class of Bernoulli problems.J. Math. Anal. Appl. 314 126-149 (2006). Zbl 1088.49028, MR 2183542, 10.1016/j.jmaa.2005.03.100
Reference: [18] Kinderlehrer, D., Nirenberg, L.: Regularity in free boundary problems.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 4 373-391 (1977). Zbl 0352.35023, MR 0440187
Reference: [19] Lewy, H.: A note on harmonic functions and a hydrodynamical application.Proc. Am. Math. Soc. 3 111-113 (1952). Zbl 0046.41706, MR 0049399, 10.1090/S0002-9939-1952-0049399-9
Reference: [20] Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer Series in Computational Physics.Springer New York (1984). MR 0725856
.

Files

Files Size Format View
AplMat_58-2013-2_5.pdf 306.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo