Previous |  Up |  Next

Article

Title: Dichotomies for ${\bf C}_0(X)$ and ${\bf C}_b(X)$ spaces (English)
Author: Głąb, Szymon
Author: Strobin, Filip
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 1
Year: 2013
Pages: 91-105
Summary lang: English
.
Category: math
.
Summary: Jachymski showed that the set $$ \bigg \{(x,y)\in {\bf c}_0\times {\bf c}_0\colon \bigg (\sum _{i=1}^n \alpha (i)x(i)y(i)\bigg )_{n=1}^\infty \text {is bounded}\bigg \} $$ is either a meager subset of ${\bf c}_0\times {\bf c}_0$ or is equal to ${\bf c}_0\times {\bf c}_0$. In the paper we generalize this result by considering more general spaces than ${\bf c}_0$, namely ${\bf C}_0(X)$, the space of all continuous functions which vanish at infinity, and ${\bf C}_b(X)$, the space of all continuous bounded functions. Moreover, we replace the meagerness by $\sigma $-porosity. (English)
Keyword: continuous function
Keyword: integration
Keyword: Baire category
Keyword: porosity
MSC: 28A25
MSC: 46B25
MSC: 54C35
MSC: 54E52
idZBL: Zbl 1274.46046
idMR: MR3035499
DOI: 10.1007/s10587-013-0006-4
.
Date available: 2013-03-01T16:04:47Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143172
.
Reference: [1] Balcerzak, M., Wachowicz, A.: Some examples of meager sets in Banach spaces.Real Anal. Exch. 26 877-884 (2001). Zbl 1046.46013, MR 1844401, 10.2307/44154085
Reference: [2] Engelking, R.: General Topology. Sigma Series in Pure Mathematics, 6.Berlin, Heldermann (1989). MR 1039321
Reference: [3] Głąb, S., Strobin, F.: Descriptive properties of density preserving autohomeomorphisms of the unit interval.Cent. Eur. J. Math. 8 928-936 (2010). Zbl 1217.28001, MR 2727440, 10.2478/s11533-010-0054-z
Reference: [4] Halmos, P. R.: Measure Theory.New York: D. Van Nostrand London, Macmillan (1950). Zbl 0040.16802, MR 0033869
Reference: [5] Jachymski, J.: A nonlinear Banach-Steinhaus theorem and some meager sets in Banach spaces.Stud. Math. 170 303-320 (2005). Zbl 1090.46015, MR 2185961, 10.4064/sm170-3-7
Reference: [6] Strobin, F.: Porosity of convex nowhere dense subsets of normed linear spaces.Abstr. Appl. Anal. 2009 (2009), Article ID 243604, pp. 11. Zbl 1192.46020, MR 2576578
Reference: [7] Zajíek, L.: On $\sigma$-porous sets in abstract spaces.Abstr. Appl. Anal. 2005 509-534 (2005). MR 2201041, 10.1155/AAA.2005.509
.

Files

Files Size Format View
CzechMathJ_63-2013-1_6.pdf 296.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo