Previous |  Up |  Next

Article

Title: Slant and pseudo-slant submanifolds in ${\rm LCS}$-manifolds (English)
Author: Atçeken, Mehmet
Author: Kumar Hui, Shyamal
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 1
Year: 2013
Pages: 177-190
Summary lang: English
.
Category: math
.
Summary: We show new results on when a pseudo-slant submanifold is a LCS-manifold. Necessary and sufficient conditions for a submanifold to be pseudo-slant are given. We obtain necessary and sufficient conditions for the integrability of distributions which are involved in the definition of the pseudo-slant submanifold. We characterize the pseudo-slant product and give necessary and sufficient conditions for a pseudo-slant submanifold to be the pseudo-slant product. Also we give an example of a slant submanifold in an LCS-manifold to illustrate the subject. (English)
Keyword: slant submanifold
Keyword: pseudo-slant submanifold
Keyword: ${\rm LCS}$-manifold
MSC: 53C15
MSC: 53C25
MSC: 53C40
idZBL: Zbl 1274.53047
idMR: MR3035505
DOI: 10.1007/s10587-013-0012-6
.
Date available: 2013-03-01T16:14:06Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143178
.
Reference: [1] Atçeken, M.: Slant submanifolds of a Riemannian product manifold.Acta Math. Sci., Ser. B, Engl. Ed. 30 (2010), 215-224. MR 2658956, 10.1016/S0252-9602(10)60039-2
Reference: [2] Bishop, R. L., O'Neill, B.: Manifolds of negative curvature.Trans. Am. Math. Soc. 145 (1969), 1-49. Zbl 0191.52002, MR 0251664, 10.1090/S0002-9947-1969-0251664-4
Reference: [3] Cabrerizo, J. L., Carriazo, A., Fernández, L. M., Fernández, M.: Semi-slant submanifolds of a Sasakian manifold.Geom. Dedicata 78 (1999), 183-199. Zbl 0944.53028, MR 1722833, 10.1023/A:1005241320631
Reference: [4] Cabrerizo, J. L., Carriazo, A., Fernández, L. M., Fernández, M.: Structure on a slant submanifold of a contact manifold.Indian J. Pure Appl. Math. 31 (2000), 857-864. Zbl 0984.53034, MR 1779445
Reference: [5] Carriazo, A., Fernández, L. M., Hans-Uber, M. B.: Some slant submanifolds of $S$-manifolds.Acta Math. Hung. 107 (2005), 267-285. Zbl 1120.53027, MR 2150790, 10.1007/s10474-005-0195-x
Reference: [6] Chen, B. Y.: Geometry of Slant Submanifolds.Kath. Univ. Leuven, Dept. of Mathematics Leuven (1990). Zbl 0716.53006, MR 1099374
Reference: [7] Khan, V. A., Khan, M. A.: Pseudo-slant submanifolds of a Sasakian manifold.Indian J. Pure Appl. Math. 38 (2007), 31-42. Zbl 1117.53043, MR 2333574
Reference: [8] Lotta, A.: Slant submanifolds in contact geometry.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 39 (1996), 183-198. Zbl 0885.53058
Reference: [9] Matsumoto, K., Mihai, I.: On a certain transformation in a Lorentzian para-Sasakian manifold.Tensor, New Ser. 47 (1988), 189-197. Zbl 0679.53034, MR 1004844
Reference: [10] Mihai, I., Chen, B. Y.: Classification of quasi-minimal slant surfaces in Lorentzian complex space forms.Acta Math. Hung. 122 (2009), 307-328. Zbl 1199.53167, MR 2481783, 10.1007/s10474-008-8033-6
Reference: [11] Papaghiuc, N.: Semi-slant submanifolds of a Kaehlerian manifold.An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nou\v a, Mat. 40 (1994), 55-61. Zbl 0847.53012, MR 1328947
Reference: [12] Shaikh, A. A.: On Lorentzian almost paracontact manifolds with a structure of the concircular type.Kyungpook Math. J. 43 (2003), 305-314. Zbl 1054.53056, MR 1983436
Reference: [13] Shaikh, A. A., Baishya, K. K.: On concircular structure spacetimes.J. Math. Stat. 1 (2005), 129-132. Zbl 1142.53326, MR 2197611, 10.3844/jmssp.2005.129.132
Reference: [14] Shaikh, A. A., Kim, H. Y., Hui, S. K.: On Lorentzian quasi-Einstein manifolds.J. Korean Math. Soc. 48 (2011), 669-689. Zbl 1227.53030, MR 2840519, 10.4134/JKMS.2011.48.4.669
Reference: [15] Yano, K.: Concircular geometry. 1. Concircular transformations.Proc. Imp. Acad. Jap. 16 (1940), 195-200. Zbl 0024.08102, MR 0003113
.

Files

Files Size Format View
CzechMathJ_63-2013-1_12.pdf 256.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo