Previous |  Up |  Next

Article

Title: Oscillation of even order nonlinear delay dynamic equations on time scales (English)
Author: Erbe, Lynn
Author: Mert, Raziye
Author: Peterson, Allan
Author: Zafer, Ağacık
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 1
Year: 2013
Pages: 265-279
Summary lang: English
.
Category: math
.
Summary: One of the important methods for studying the oscillation of higher order differential equations is to make a comparison with second order differential equations. The method involves using Taylor's Formula. In this paper we show how such a method can be used for a class of even order delay dynamic equations on time scales via comparison with second order dynamic inequalities. In particular, it is shown that nonexistence of an eventually positive solution of a certain second order delay dynamic inequality is sufficient for oscillation of even order dynamic equations on time scales. The arguments are based on Taylor monomials on time scales. (English)
Keyword: time scale
Keyword: even order
Keyword: delay
Keyword: oscillation
Keyword: Taylor monomial
MSC: 34K11
MSC: 34N05
MSC: 39A10
MSC: 39A99
idZBL: Zbl 1274.34262
idMR: MR3035510
DOI: 10.1007/s10587-013-0017-1
.
Date available: 2013-03-01T16:21:00Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143183
.
Reference: [1] Agarwal, R. P., Bohner, M.: Basic calculus on time scales and some of its applications.Result. Math. 35 (1999), 3-22. Zbl 0927.39003, MR 1678096, 10.1007/BF03322019
Reference: [2] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales.Birkhäuser, Boston (2001). Zbl 0993.39010, MR 1843232
Reference: [3] Çakmak, D., Tiryaki, A.: Oscillation criteria for certain forced second-order nonlinear differential equations with delayed argument.Comput. Math. Appl. 49 (2005), 1647-1653. Zbl 1093.34552, MR 2154674, 10.1016/j.camwa.2005.02.005
Reference: [4] El-Sayed, M. A.: An oscillation criterion for a forced second-order linear differential equation.Proc. Am. Math. Soc. 118 (1993), 813-817. Zbl 0777.34023, MR 1154243
Reference: [5] Erbe, L., Hassan, T. S., Peterson, A.: Oscillation of second order neutral delay differential equations.Adv. Dyn. Syst. Appl. 3 (2008), 53-71. MR 2547661
Reference: [6] Han, Z., Sun, S., Shi, B.: Oscillation criteria for a class of second-order Emden-Fowler delay dynamic equations on time scales.J. Math. Anal. Appl. 334 (2007), 847-858. Zbl 1125.34047, MR 2338632, 10.1016/j.jmaa.2007.01.004
Reference: [7] Kartsatos, A. G.: On the maintenance of oscillation of $n$-th order equations under the effect of a small forcing term.J. Differ. Equations 10 (1971), 355-363. MR 0288358, 10.1016/0022-0396(71)90058-1
Reference: [8] Lakshmikantham, V., Sivasundaram, S., Kaymakçalan, B.: Dynamic Systems on Measure Chains.Kluwer Academic Publishers, Dordrecht (1996). Zbl 0869.34039, MR 1419803
Reference: [9] Mert, R., Zafer, A.: Eventually positive solutions of second-order superlinear dynamic equations.Further progress in analysis. Proceedings of the 6th International ISAAC Congress, 13-18 August, 2007, Ankara, Turkey, World Scientific (2009), 535-544 H. G. W. Begehr et. al. Zbl 1185.34146, MR 2581655
Reference: [10] Mert, R., Zafer, A.: A necessary and sufficient condition for oscillation of second order sublinear delay dynamic equations.Discrete Contin. Dyn. Syst. Supplement Volume (2011), 1061-1067. MR 3012907
Reference: [11] Naito, M.: On strong oscillation of retarded differential equations.Hiroshima Math. J. 11 (1981), 553-560. Zbl 0512.34056, MR 0635038, 10.32917/hmj/1206133990
Reference: [12] Onose, H.: A comparison theorem and the forced oscillation.Bull. Aust. Math. Soc. 13 (1975), 13-19. Zbl 0307.34034, MR 0393732, 10.1017/S0004972700024217
Reference: [13] Ou, C. H., Wong, J. S. W.: Forced oscillation of $n$th order functional differential equations.J. Math. Anal. Appl. 262 (2001), 722-732. Zbl 0997.34059, MR 1859335, 10.1006/jmaa.2001.7614
Reference: [14] Sun, Y. G., Wong, J. S. W.: Note on forced oscillation of $n$th-order sublinear differential equations.J. Math. Anal. Appl. 298 (2004), 114-119. Zbl 1064.34020, MR 2086536, 10.1016/j.jmaa.2004.03.076
Reference: [15] Yílmaz, Y. Şahiner, Zafer, A.: Oscillation of even order nonlinear neutral differential equations with damping.Math. Inequal. Appl. 1 (1998), 445-451. MR 1629420
Reference: [16] Yang, Q.: Interval oscillation criteria for a forced second order nonlinear ordinary differential equations with oscillatory potential.Appl. Math. Comput. 135 (2003), 49-64. Zbl 1030.34034, MR 1934314, 10.1016/S0096-3003(01)00307-1
.

Files

Files Size Format View
CzechMathJ_63-2013-1_17.pdf 274.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo