Previous |  Up |  Next

Article

Title: Orlicz spaces associated with a semi-finite von Neumann algebra (English)
Author: Ayupov, Sh. A.
Author: Chilin, V. I.
Author: Abdullaev, R. Z.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 4
Year: 2012
Pages: 519-533
Summary lang: English
.
Category: math
.
Summary: Let $M$ be a von Neumann algebra, let $\varphi$ be a weight on $M$ and let $\Phi$ be $N$-function satisfying the $(\delta_{2}, \Delta_{2})$-condition. In this paper we study Orlicz spaces, associated with $M$, $\varphi$ and $\Phi $. (English)
Keyword: Orlicz spaces
Keyword: von Neumann algebra
Keyword: weight
MSC: 46L51
MSC: 46L52
idMR: MR3016423
.
Date available: 2013-03-02T13:36:53Z
Last updated: 2015-02-11
Stable URL: http://hdl.handle.net/10338.dmlcz/143187
.
Reference: [1] Al-Rashed M.H.A., Zegarlinski B.: Noncommutative Orlicz spaces associated to a state.Studia Math. 180 (2007), 199–209. Zbl 1221.46065, MR 2314076
Reference: [2] Brawn L.G., Kosaki H.: Jensen's inequality in semi-finite von Neumann algebras.J. Operator Theory 23 (1990), 3–19. MR 1054812
Reference: [3] Fack T., Kosaki H.: Generalized $s$-number of $\tau$-measurable operators.Pacific J. Math. 123 (1986), 269–300. MR 0840845, 10.2140/pjm.1986.123.269
Reference: [4] Krasnosel'sky M.F., Rutitskii Ya.B.: Convex Functions and Orlicz Spaces.Noordhoff, Groningen, 1961; (translated from the Russian). MR 0126722
Reference: [5] Kunze W.: Noncommutative Orlicz spaces and generalized Arens algebras.Math. Nachr. 147 (1990), 123–138. Zbl 0746.46062, MR 1127316, 10.1002/mana.19901470114
Reference: [6] Muratov M.A.: Non commutative Orlicz spaces.Dokl. Akad. Nauk UzSSR 6 (1978), 11–13. MR 0511082
Reference: [7] Muratov M.A.: The Luxemburg norm in an Orlicz space of measurable operators.Dokl. Akad. Nauk UzSSR 1 (1979), 5–6. MR 0529172
Reference: [8] Muratov M.A., Chilin V.I.: Algebras of measurable operators and locally measurable operators.Kyev. Institute of Math. Ukrainian Academy of Sciences, 69, 2007 (Russian).
Reference: [9] Pedersen G., Takesaki M.: The Radon-Nikodym theorem for von Neumann algebras.Acta Math. 130 (1973), 53–87. Zbl 0262.46063, MR 0412827, 10.1007/BF02392262
Reference: [10] Takesaki M.: Theory of Operator Algebras I.Springer, New York, 1979. Zbl 0990.46034, MR 0548728
Reference: [11] Trunov N.V.: The $L_p$-spaces associated with a weight on a semi-finite von Neumann algebra.Constructive theory of functions and functional analysis, no. 3, pp. 88–93, Kazan. Gos. Univ., Kazan, 1981. MR 0652348
Reference: [12] Trunov N.V.: On the theory of normal weights on von Neumann algebras.Izv. Vyssh. Uchebn. Zaved. Math. 8 1982, 61–70. Zbl 0521.46056, MR 0675719
Reference: [13] Trunov N.V., Sherstnev A.N.: Introduction to the theory of noncommutative integration.N. Soviet Math., 37. Translation from Itogi Nauki i Tekhniki, Sovr. Probl. Math. 27 (1985), 167–190. Zbl 0616.46058, MR 0824264
Reference: [14] Yeadon F.J.: Convergence of measurable operators.Proc. Cambridge Philos. Soc. 74 (1973), 257–268. Zbl 0272.46043, MR 0326411
Reference: [15] Yeadon F.J.: Non-commutative $L^{p}$-spaces.Math. Proc. Cambridge Philos. Soc. 77 (1975), no. 1, 91–102. MR 0353008, 10.1017/S0305004100049434
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-4_2.pdf 274.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo