Previous |  Up |  Next

Article

Title: AM-Compactness of some classes of operators (English)
Author: Aqzzouz, Belmesnaoui
Author: H'michane, Jawad
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 4
Year: 2012
Pages: 509-518
Summary lang: English
.
Category: math
.
Summary: We characterize Banach lattices on which each regular order weakly compact (resp. b-weakly compact, almost Dunford-Pettis, Dunford-Pettis) operator is AM-compact. (English)
Keyword: AM-compact operator
Keyword: order weakly compact operator
Keyword: b-weakly compact operator
Keyword: almost Dunford-Pettis operator
Keyword: b-AM-compact operator
Keyword: order continuous norm
Keyword: discrete Banach lattice
MSC: 46A40
MSC: 46B40
MSC: 46B42
idMR: MR3016422
.
Date available: 2013-03-02T13:35:32Z
Last updated: 2015-02-11
Stable URL: http://hdl.handle.net/10338.dmlcz/143185
.
Reference: [1] Aliprantis C.D., Burkinshaw O.: Locally Solid Riesz Spaces.Academic Press, New York-London, 1978. Zbl 1043.46003, MR 0493242
Reference: [2] Aliprantis C.D., Burkinshaw O.: Positive Operators.reprint of the 1985 original, Springer, Dordrecht, 2006. Zbl 1098.47001, MR 2262133
Reference: [3] Alpay S., Altin B., Tonyali C.: On property $(b)$ of vector lattices.Positivity 7 (2003), no. 1–2, 135–139. Zbl 1036.46018, MR 2028377, 10.1023/A:1025840528211
Reference: [4] Alpay S., Altin B.: On Riesz spaces with $b$-property and $b$-weakly compact operators.Vladikavkaz. Mat. Zh. 11 (2009), no. 2, 19–26. MR 2529405
Reference: [5] Aqzzouz B., Nouira R., Zraoula L.: Compactness properties of operators dominated by AM-compact operators.Proc. Amer. Math. Soc. 135 (2007), no. 4, 1151–1157. Zbl 1118.47029, MR 2262919, 10.1090/S0002-9939-06-08585-6
Reference: [6] Aqzzouz B., Zraoula L.: AM-compactness of positive Dunford-Pettis operators on Banach lattices.Rend. Circ. Mat. Palermo (2) 56 (2007), no. 3, 305–316. Zbl 1140.47029, MR 2376267, 10.1007/BF03032084
Reference: [7] Aqzzouz B., Elbour A., Hmichane J.: The duality problem for the class of $b$-weakly compact operators.Positivity 13 (2009) no. 4, 683–692. Zbl 1191.47024, MR 2538515, 10.1007/s11117-008-2288-6
Reference: [8] Aqzzouz B., Hmichane J.: The class of b-AM-compact operators.Quaestiones Mathematicae(to appear).
Reference: [9] Aqzzouz B., Elbour A.: Some characterizations of almost Dunford-Pettis operators and applications.Positivity 15 (2011), 369–380. Zbl 1244.47034, MR 2832593, 10.1007/s11117-010-0083-7
Reference: [10] Aqzzouz B., Hmichane J.: The b-weak compactness of order weakly compact operators.Complex Anal. Oper. Theory, DOI 10. 1007/s 11785-011-0138-1.
Reference: [11] Chen Z.L., Wickstead A.W.: Some applications of Rademacher sequences in Banach lattices.Positivity 2 (1998), no. 2, 171–191. Zbl 0967.46019, MR 1656870, 10.1023/A:1009767118180
Reference: [12] Chen Z.L., Wickstead A.W.: Relative weak compactness of solid hulls in Banach lattices.Indag. Math. (N.S.) 9 (1998), no. 2, 187–196. Zbl 0922.46017, MR 1691436, 10.1016/S0019-3577(98)80017-7
Reference: [13] Dodds P.G.: o-Weakly compact mappings of vector lattices.Trans. Amer. Math. Soc. 214 (1975), 389–402. MR 0385629, 10.2307/1997114
Reference: [14] Dodds P.G., Fremlin D.H.: Compact operators on Banach lattices.Israel J. Math. 34 (1979) 287-320. MR 0570888, 10.1007/BF02760610
Reference: [15] Grothendieck A.: Sur les applications linéaires faiblement compactes d'espaces du type $C(K)$.Canad. J. Math. 5 (1953), 129–173. Zbl 0050.10902, MR 0058866, 10.4153/CJM-1953-017-4
Reference: [16] Holub J.R.: A note on Dunford-Pettis operators.Glasgow Math. J. 29 (1987), no. 2, 271–273. Zbl 0746.47015, MR 0901675, 10.1017/S0017089500006935
Reference: [17] Meyer-Nieberg P.: Banach lattices.Universitext, Springer, Berlin, 1991. Zbl 0743.46015, MR 1128093
Reference: [18] Sanchez J.A.: Operators on Banach lattices (Spanish)., Ph.D. Thesis, Complutense University, Madrid, 1985.
Reference: [19] Wickstead A.W.: Converses for the Dodds-Fremlin and Kalton-Saab Theorems.Math. Proc. Camb. Philos. Soc. 120 (1996), 175–179. Zbl 0872.47018, MR 1373356, 10.1017/S0305004100074752
Reference: [20] Wnuk W.: Banach lattices with the weak Dunford-Pettis property.Atti Sem. Mat. Fis. Univ. Modena 42 (1994), no. 1, 227–236. Zbl 0805.46023, MR 1282338
Reference: [21] Zaanen A.C.: Riesz Spaces II.North Holland Publishing Co., Amsterdam, 1983. Zbl 0519.46001, MR 0704021
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-4_1.pdf 229.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo