Previous |  Up |  Next

Article

Title: A model theory approach to structural limits (English)
Author: Nešetřil, Jaroslav
Author: Mendez, Patrice Ossona de
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 4
Year: 2012
Pages: 581-603
Summary lang: English
.
Category: math
.
Summary: The goal of this paper is to unify two lines in a particular area of graph limits. First, we generalize and provide unified treatment of various graph limit concepts by means of a combination of model theory and analysis. Then, as an example, we generalize limits of bounded degree graphs from subgraph testing to finite model testing. (English)
Keyword: graph
Keyword: graph limits
Keyword: model theory
Keyword: first-order logic
MSC: 05C99
idMR: MR3016428
.
Date available: 2013-03-02T13:45:35Z
Last updated: 2015-02-11
Stable URL: http://hdl.handle.net/10338.dmlcz/143192
.
Reference: [1] Adams S.: Trees and amenable equivalence relations.Ergodic Theory Dynam. Systems 10 (1990), 1–14. Zbl 0667.28003, MR 1053796
Reference: [2] Aldous D., Lyons R.: Processes on unimodular random networks.arXiv:math/0603062 (2006). Zbl 1131.60003, MR 2354165
Reference: [3] Benjamini I., Schramm O.: Recurrence of distibutional limits of finite planar graphs.Electron. J. Probab. 6 (2001), no. 23, 13pp. MR 1873300, 10.1214/EJP.v6-96
Reference: [4] Borgs C., Chayes J., Lovász L., Sós V., Szegedy B., Vesztergombi K.: Graph limits and parameter testing.in Proc. 38th Annual {ACM} Symp. Principles of Dist. Comp., pp. 51–59, 2005.
Reference: [5] Conley C., Kechris A., Tucker-Drob R.: Ultraproducts of measure preserving actions and graph combinatorics.Ergodic Theory and Dynamical Systems (2012), DOI 10.1017/S0143385711001143.
Reference: [6] Elek G.: Note on limits of finite graphs.Combinatorica 27 (2007), 503–507, DOI 10.1007/s00493-007-2214-8. MR 2359831, 10.1007/s00493-007-2214-8
Reference: [7] Elek G., Szegedy B.: Limits of hypergraphs, removal and regularity lemmas. A non-standard approach.arXiv:0705.2179v1 [math.CO] (2007).
Reference: [8] Gaboriau D.: Invariant percolation and harmonic Dirichlet functions.Geom. Funct. Anal. 15 (2005), 1004–1051, DOI 10.1007/s00039-005-0539-2. Zbl 1099.60070, MR 2221157, 10.1007/s00039-005-0539-2
Reference: [9] Gaifman H.: On local and non-local properties.in Proceedings of the Herbrand Symposium, Logic Colloquium '81, 1982. Zbl 0518.03008
Reference: [10] Halmos P., Givant S.: Logic as Algebra.Dolciani Mathematical Expositions, 21, The Mathematical Association of America, Washington DC, 1998. Zbl 1053.03001, MR 1612588
Reference: [11] Hanf W.: Model-theoretic methods in the study of elementary logic.in Theory of Models, J. Addison, L. Henkin, A. Tarski (eds.), pp. 132–145, North-Holland, Amsterdam, 1965. Zbl 0166.25801, MR 0210570
Reference: [12] Hodges W.: A Shorter Model Theory.Cambridge University Press, Cambridge, 1997. Zbl 0873.03036, MR 1462612
Reference: [13] Lascar D.: La théorie des modèles en peu de maux.Cassini, 2009. Zbl 1205.00006
Reference: [14] Łoś J.: Quelques remarques, théorèmes et problèmes sur les classes définissables d'algèbres.in Mathematical Interpretation of Formal Systems, Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1955. Zbl 0068.24401
Reference: [15] Lovász L., Szegedy B.: Limits of dense graph sequences.J. Combin. Theory Ser. B 96 (2006), 933–957. Zbl 1113.05092, MR 2274085, 10.1016/j.jctb.2006.05.002
Reference: [16] Martin D., Steel J.: A proof of projective determinacy.J. Amer. Math. Soc. 2 (1989), no. 1, 71–125. Zbl 0668.03021, MR 0955605, 10.1090/S0894-0347-1989-0955605-X
Reference: [17] Matoušek J., Nešetřil J.: Invitation to Discrete Mathematics.Oxford University Press, New York, 1998 (second edition 2009). Zbl 1152.05002, MR 2469243
Reference: [18] Mycielski J., Świerczkowski S.: On the Lebesgue measurability and the axiom of determinateness.Fund. Math. 54 (1964), 67–71. Zbl 0147.19503, MR 0161788
Reference: [19] Nešetřil J., Ossona de Mendez P.: Tree depth, subgraph coloring and homomorphism bounds.European J. Combin. 27 (2006), no. 6, 1022–1041, DOI 10.1016/j.ejc.2005.01.010. MR 2226435, 10.1016/j.ejc.2005.01.010
Reference: [20] Nešetřil J., Ossona de Mendez P.: From sparse graphs to nowhere dense structures: Decompositions, independence, dualities and limits.in European Congress of Mathematics, pp. 135–165, European Mathematical Society, Zürich, 2010, DOI 10.4171/077-1/7. MR 2648324
Reference: [21] Nešetřil J., Ossona de Mendez P.: Sparsity. Graphs, Structures, and Algorithms.Algorithms and Combinatorics, 28, Springer, Heidelberg, 2012, 465 pp. MR 2920058, 10.1007/978-3-642-27875-4
Reference: [22] Nešetřil J., Ossona de Mendez P.: Graph limits: a unified approach with application to the study of limits of graphs with bounded diameter components.manuscript, 2012.
Reference: [23] Rudin W.: Functional Analysis.Mc-Graw Hill, New York, 1973. Zbl 0867.46001, MR 0365062
Reference: [24] Stone M.: The theory of representations of Boolean algebras.Trans. Amer. Math. Soc. 40 (1936), 37–111. MR 1501865
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-4_7.pdf 361.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo