Previous |  Up |  Next

Article

Title: A global uniqueness result for fractional order implicit differential equations (English)
Author: Abbas, Said
Author: Benchohra, Mouffak
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 4
Year: 2012
Pages: 605-614
Summary lang: English
.
Category: math
.
Summary: In this paper we investigate the global existence and uniqueness of solutions for the initial value problems (IVP for short), for a class of implicit hyperbolic fractional order differential equations by using a nonlinear alternative of Leray-Schauder type for contraction maps on Fréchet spaces. (English)
Keyword: partial hyperbolic differential equation
Keyword: fractional order
Keyword: left-sided mixed Riemann-Liouville integral
Keyword: mixed regularized derivative
Keyword: solution
Keyword: Fréchet space
Keyword: fixed point
MSC: 26A33
idMR: MR3016429
.
Date available: 2013-03-02T13:47:18Z
Last updated: 2015-02-11
Stable URL: http://hdl.handle.net/10338.dmlcz/143193
.
Reference: [1] Abbas S., Agarwal R.P., Benchohra M.: Darboux problem for impulsive partial hyperbolic differential equations of fractional order with variable times and infinite delay.Nonlinear Anal. Hybrid Syst. 4 (2010), 818–829. Zbl 1204.35171, MR 2680249
Reference: [2] Abbas S., Benchohra M.: Partial hyperbolic differential equations with finite delay involving the Caputo fractional derivative.Commun. Math. Anal. 7 (2009), 62–72. Zbl 1178.35371, MR 2535015
Reference: [3] Abbas S., Benchohra M.: The method of upper and lower solutions for partial hyperbolic fractional order differential inclusions with impulses.Discuss. Math. Differ. Incl. Control Optim. 30 (2010), no. 1, 141–161. Zbl 1203.26005, MR 2682404, 10.7151/dmdico.1116
Reference: [4] Abbas S., Benchohra M., Gorniewicz L.: Existence theory for impulsive partial hyperbolic functional differential equations involving the Caputo fractional derivative.Sci. Math. Jpn. 72 (2010), 49–60. Zbl 1200.26004, MR 2666846
Reference: [5] Abbas S., Benchohra M., N'Guérékata G.M.: Topics in Fractional Differential Equations.Developments in Mathematics, 27, Springer, New York, 2012. MR 2962045, 10.1007/978-1-4614-4036-9
Reference: [6] Abbas S., Benchohra M., Vityuk A.N.: On fractional order derivatives and Darboux problem for implicit differential equations.Fract. Calc. Appl. Anal. 15 (2) (2012), 168–182. MR 2897771
Reference: [7] Belarbi A., Benchohra M., Ouahab A.: Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces.Appl. Anal. 85 (2006), 1459–1470. Zbl 1175.34080, MR 2282996, 10.1080/00036810601066350
Reference: [8] Benchohra M., Graef J.R., Hamani S.: Existence results for boundary value problems of nonlinear fractional differential equations with integral conditions.Appl. Anal. 87 (2008), no. 7, 851–863. MR 2458962, 10.1080/00036810802307579
Reference: [9] Benchohra M., Hamani S., Ntouyas S.K.: Boundary value problems for differential equations with fractional order.Surv. Math. Appl. 3 (2008), 1–12. Zbl 1198.26007, MR 2390179
Reference: [10] Benchohra M., Henderson J., Ntouyas S.K., Ouahab A.: Existence results for functional differential equations of fractional order.J. Math. Anal. Appl. 338 (2008), 1340–1350. MR 2386501, 10.1016/j.jmaa.2007.06.021
Reference: [11] Frigon M., Granas A.: Résultats de type Leray-Schauder pour des contractions sur des espaces de Fréchet.Ann. Sci. Math. Québec 22 (1998), no. 2, 161–168. Zbl 1100.47514, MR 1677243
Reference: [12] Henry D.: Geometric Theory of Semilinear Parabolic Partial Differential Equations.Springer, Berlin-New York, 1989.
Reference: [13] Hilfer R.: Applications of Fractional Calculus in Physics.World Scientific, Singapore, 2000. Zbl 0998.26002, MR 1890104
Reference: [14] Kilbas A.A., Srivastava H.M., Trujillo J.J.: Theory and Applications of Fractional Differential Equations.North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006. Zbl 1092.45003, MR 2218073
Reference: [15] Kilbas A.A., Marzan S.A.: Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions.Differ. Equ. 41 (2005), 84–89. Zbl 1160.34301, MR 2213269, 10.1007/s10625-005-0137-y
Reference: [16] Miller K.S., Ross B.: An Introduction to the Fractional Calculus and Differential Equations.John Wiley, New York, 1993. MR 1219954
Reference: [17] Oldham K.B., Spanier J.: The Fractional Calculus.Academic Press, New York, London, 1974. Zbl 0292.26011, MR 0361633
Reference: [18] Podlubny I.: Fractional Differential Equation.Academic Press, San Diego, 1999.
Reference: [19] Samko S.G., Kilbas A.A., Marichev O.I.: Fractional Integrals and Derivatives. Theory and Applications.Gordon and Breach, Yverdon, 1993. Zbl 0818.26003, MR 1347689
Reference: [20] Vityuk A.N.: Existence of solutions of partial differential inclusions of fractional order.Izv. Vyssh. Uchebn. Zaved. Mat. 8 (1997), 13–19. MR 1485123
Reference: [21] Vityuk A.N., Golushkov A.V.: Existence of solutions of systems of partial differential equations of fractional order.Nonlinear Oscil. 7 (2004), no. 3, 318–325. MR 2151816, 10.1007/s11072-005-0015-9
Reference: [22] Vityuk A.N., Mykhailenko A.V.: On a class of fractional-order differential equation.Nonlinear Oscil. 11 (2008), no. 3, 307–319. MR 2512745, 10.1007/s11072-009-0032-1
Reference: [23] Vityuk A.N., Mykhailenko A.V.: The Darboux problem for an implicit fractional-order differential equation.J. Math. Sci. 175 (4) (2011), 391–401. MR 2977138, 10.1007/s10958-011-0353-3
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-4_8.pdf 225.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo