Previous |  Up |  Next

Article

MSC: 39A10
Keywords:
third order neutral difference equation; oscillation; nonoscillation
Summary:
Some new criteria for the oscillation of third order nonlinear neutral difference equations of the form \begin {equation*} \Delta (a_n(\Delta ^2(x_n+b_{n}x_{n-\delta }))^\alpha )+q_{n}x^{\alpha }_{n+1-\tau }=0 \end {equation*} and \begin {equation*} \Delta (a_n(\Delta ^2(x_n-b_nx_{n-\delta }))^\alpha )+q_nx^{\alpha }_{n+1-\tau }=0 \end {equation*} are established. Some examples are presented to illustrate the main results.
References:
[1] Agarwal, R. P.: Difference Equations and Inequalities. 2nd edition, Marcel Dekker, New York (2000). MR 1740241 | Zbl 0952.39001
[2] Agarwal, R. P., Grace, S. R., O'Regan, D.: Oscillation Theory for Difference and Functional Differential Equations. Kluwer, Dordrecht (2000). Zbl 0954.34002
[3] Agarwal, R. P., Bohner, M., Grace, S. R., O'Regan, D.: Discrete Oscillations Theory. Hindawi, New York. (2005).
[4] Artzroumi, M.: Generalized stable population theory. J. Math. Biology 21 (1985), 363-381. DOI 10.1007/BF00276233 | MR 0804157
[5] Baculíková, B., Džurina, J.: Oscillation of third order neutral differential equation. Math. Comput. Modelling 52 (2010), 215-226. DOI 10.1016/j.mcm.2010.02.011 | MR 2645933
[6] Arkin, Y. Bolat,"{O}.: Oscillatory behavior of higher order nonlinear neutral type functional difference equation with oscillating coefficients. Appl. Math. Lett. 17 (2004), 1073-1078. DOI 10.1016/j.aml.2004.07.011 | MR 2087757
[7] Chen, M. P., Lalli, B. S., Yu, J. S.: Oscillation in neutral delay difference equations with variable coefficients. Computers Math Appl. 29 (1995), 5-11. DOI 10.1016/0898-1221(94)00223-8 | MR 1326277 | Zbl 0819.39004
[8] Grace, S. R., Hamedani, G. G.: On the oscillation of certain neutral difference equations. Math. Bohem. 125 (2000), 307-321. MR 1790122 | Zbl 0969.39006
[9] Graef, J. R., Miciano, A., Spikes, P. W., Sundaran, P., Thandapani, E.: Oscillatory and asymptotic behavior of solutions of nonlinear neutral type difference equations. J. Aust. Math. Soc., Ser. B 38 (1996), 163-171. DOI 10.1017/S0334270000000552 | MR 1414357
[10] Lalli, B. S., Zhang, B. G., Li, J. Z.: On the oscillation of solutions and existence of positive solutions of neutral difference equations. J. Math. Anal. Appl. 158 (1991), 213-233. DOI 10.1016/0022-247X(91)90278-8 | MR 1113411 | Zbl 0732.39002
[11] Lalli, B. S., Zhang, B. G.: Oscillation and comparison theorems for certain neutral difference equations. J. Aust. Math. Soc., Ser B 34 (1992), 245-256. DOI 10.1017/S0334270000008754 | MR 1181576 | Zbl 0759.39002
[12] Lalli, B. S.: Oscillation theorems for neutral difference equations. Comput. Math. Appl. 28 (1994), 191-202. DOI 10.1016/0898-1221(94)00107-3 | MR 1284234 | Zbl 0807.39004
[13] Li, W. T.: Oscillation of higher order neutral nonlinear difference equations. Appl. Math. Lett. 4 (1998), 1-8. DOI 10.1016/S0893-9659(98)00047-0 | Zbl 0946.39002
[14] Lin, X. Y.: Oscillation for higher order neutral superlinear delay difference equations with unstable type. Comp. Math. Appl. 50 (2005), 683-691. DOI 10.1016/j.camwa.2005.05.003 | MR 2165630 | Zbl 1089.39002
[15] Saker, S. H.: Oscillation and asymptotic behavior of third order neutral delay difference equations. Dym. Syst. Appl. 15 (2006), 549-568. MR 2367663
[16] Sobiło, A. A., Migda, M.: On the oscillation of solutions of third order linear difference equations of neutral type. Math. Bohem. 130 (2005), 19-33. MR 2128356 | Zbl 1110.39002
[17] Tang, X., Yan, J.: Oscillation and nonoscillation of an odd order nonlinear difference equations. Funct. Differ. Equ. 7 (2000), 157-166. MR 1941865
[18] Thandapani, E., Mahalingam, K.: Oscillatory properties of third order neutral delay difference equations. Demon. Math. 35 (2002), 325-337. MR 1907305 | Zbl 1034.39010
[19] Zhou, Z.: Oscillation for nonlinear difference equation of higher order. J. Math. Study 34 (2001), 282-286. MR 1864910
Partner of
EuDML logo