Previous |  Up |  Next

Article

Title: The strongest t-norm for fuzzy metric spaces (English)
Author: Qiu, Dong
Author: Zhang, Weiquan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 49
Issue: 1
Year: 2013
Pages: 141-148
Summary lang: English
.
Category: math
.
Summary: In this paper, we prove that for a given positive continuous t-norm there is a fuzzy metric space in the sense of George and Veeramani, for which the given t-norm is the strongest one. For the opposite problem, we obtain that there is a fuzzy metric space for which there is no strongest t-norm. As an application of the main results, it is shown that there are infinite non-isometric fuzzy metrics on an infinite set. (English)
Keyword: fuzzy metric space
Keyword: t-norm
Keyword: isometry
Keyword: analysis
MSC: 62A10
MSC: 93E12
.
Date available: 2013-03-05T15:13:23Z
Last updated: 2013-07-31
Stable URL: http://hdl.handle.net/10338.dmlcz/143245
.
Reference: [1] Dombi, J.: A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators..Fuzzy Set and Systems 8 (1982), 149-163. Zbl 0494.04005, MR 0666628, 10.1016/0165-0114(82)90005-7
Reference: [2] George, A., Veeramani, P.: On some results in fuzzy metric spaces..Fuzzy Set and Systems 64 (1994), 395-399. Zbl 0843.54014, MR 1289545, 10.1016/0165-0114(94)90162-7
Reference: [3] Gregori, V., Romaguera, S.: On completion of fuzzy metrics paces..Fuzzy Set and Systems 130 (2002), 399-404. MR 1928435, 10.1016/S0165-0114(02)00115-X
Reference: [4] Gregori, V., Morillas, S., Sapena, A.: Examples of fuzzy metrics and applications..Fuzzy Set and Systems 170 (2011), 95-111. Zbl 1210.94016, MR 2775611
Reference: [5] Klement, E. P., Mesiar, R., Pap, E.: Triangular norms..Kluwer Academic, Dordrecht 2000. Zbl 1087.20041, MR 1790096
Reference: [6] Kramosil, I., Michálek, J.: Fuzzy metric and statistical metric spaces..Kybernetika 11 (1975), 326-334. MR 0410633
Reference: [7] Menger, K.: Statistical metrics..Proc. Nat. Acad. Sci. USA 28 (1942), 535-537. Zbl 0063.03886, MR 0007576, 10.1073/pnas.28.12.535
Reference: [8] Sapena, A.: A contribution to the study of fuzzy metric spaces..Appl. Gen. Topology 2 (2001), 63-76. Zbl 1249.76040, MR 1863833
Reference: [9] Schweizer, B., Sklar, A.: Statistical metric spaces..Pacific J. Math. 10 (1960), 314-334. Zbl 0136.39301, MR 0115153
Reference: [10] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces..North Holland, Amsterdam 1983. Zbl 0546.60010, MR 0790314
Reference: [11] Thorp, E.: Best possible triangle inequalities for statistical metric spaces..Proc. Amer. Math. Soc. 11 (1960), 734-740. Zbl 0125.37002, MR 0119302, 10.1090/S0002-9939-1960-0119302-6
.

Files

Files Size Format View
Kybernetika_49-2013-1_10.pdf 250.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo