Title:
|
On character of points in the Higson corona of a metric space (English) |
Author:
|
Banakh, Taras |
Author:
|
Chervak, Ostap |
Author:
|
Zdomskyy, Lubomyr |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
54 |
Issue:
|
2 |
Year:
|
2013 |
Pages:
|
159-178 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove that for an unbounded metric space $X$, the minimal character $\mathsf m\chi(\check X)$ of a point of the Higson corona $\check X$ of $X$ is equal to $\mathfrak u$ if $X$ has asymptotically isolated balls and to $\max\{\mathfrak u,\mathfrak d\}$ otherwise. This implies that under $\mathfrak u < \mathfrak d$ a metric space $X$ of bounded geometry is coarsely equivalent to the Cantor macro-cube $2^{<\mathbb N}$ if and only if $\dim (\check X)=0$ and $\mathsf m\chi (\check X)= \mathfrak d$. This contrasts with a result of Protasov saying that under CH the coronas of any two asymptotically zero-dimensional unbounded metric separable spaces are homeomorphic. (English) |
Keyword:
|
Higson corona |
Keyword:
|
character of a point |
Keyword:
|
ultrafilter number |
Keyword:
|
dominating number |
MSC:
|
03E17 |
MSC:
|
03E35 |
MSC:
|
03E50 |
MSC:
|
54D35 |
MSC:
|
54E35 |
MSC:
|
54F45 |
idZBL:
|
Zbl 06221260 |
idMR:
|
MR3067701 |
. |
Date available:
|
2013-06-25T12:47:56Z |
Last updated:
|
2015-07-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143267 |
. |
Reference:
|
[1] Banakh T., Zarichnyi I.: Characterizing the Cantor bi-cube in asymptotic categories.Groups Geom. Dyn. 5 (2011), no. 4, 691–728. Zbl 1246.54023, MR 2836457, 10.4171/GGD/145 |
Reference:
|
[2] Banakh T., Zarichnyi I.: A coarse characterization of the Baire macro-space.Proc. of Intern. Geometry Center 3 (2010), no. 4, 6–14 (available at http://arxiv.org/abs/1103.5118). |
Reference:
|
[3] Banakh T., Zdomskyy L.: The coherence of semifilters: a survey. Selection principles and covering properties in topology.53–105, Quad. Mat., 18, Dept. Math., Seconda Univ. Napoli, Caserta, 2006. MR 2395751 |
Reference:
|
[4] Banakh T., Zdomskyy L.: Coherence of Semifilters.book in progress, http://www.franko.lviv.ua/faculty/mechmat/Departments/Topology/booksite.html. Zbl 1162.03026 |
Reference:
|
[5] Bell G., Dranishnikov A.: Asymptotic dimension.Topology Appl. 155 (2008), no. 12, 1265–1296. MR 2423966 |
Reference:
|
[6] Blass A.: Near coherence of filters, I. Cofinal equivalence of models of arithmetic.Notre Dame J. Formal Logic 27 (1986), 579–591. Zbl 0622.03040, MR 0867002, 10.1305/ndjfl/1093636772 |
Reference:
|
[7] Blass A.: Combinatorial cardinal characteristics of the continuum.in: Handbook of Set Theory, Chapter 6, pp. 395–489, Springer, Dordrecht, 2010. MR 2768685, 10.1007/978-1-4020-5764-9_7 |
Reference:
|
[8] Canjar M.: Cofinalities of countable ultraproducts: the existence theorem.Notre Dame J. Formal Logic 30 (1989), no. 4, 539–542. Zbl 0694.03029, MR 1036675, 10.1305/ndjfl/1093635237 |
Reference:
|
[9] van Douwen E.: The integers and topology.in: Handbook of Set-theoretic Topology, 111–167, North-Holland, Amsterdam, 1984. Zbl 0561.54004, MR 0776622 |
Reference:
|
[10] Dranishnikov A.: Asymptotic topology.Uspekhi Mat. Nauk 55 (2000), no. 6, 71–116. Zbl 1028.54032, MR 1840358 |
Reference:
|
[11] Dranishnikov A.N., Keesling J., Uspenskij V.V.: On the Higson corona of uniformly contractible spaces.Topology 37 (1998), no. 4, 791–803. Zbl 0910.54026, MR 1607744, 10.1016/S0040-9383(97)00048-7 |
Reference:
|
[12] Dranishnikov A., Zarichnyi M.: Universal spaces for asymptotic dimension.Topology Appl. 140 (2004), no. 2–3, 203–225. Zbl 1063.54027, MR 2074917 |
Reference:
|
[13] Fremlin D.: Consequences of Martin's Axiom.Cambridge Tracts in Mathematics, 84, Cambridge University Press, London, 1984. Zbl 1156.03050 |
Reference:
|
[14] Kechris A.: Classical Descriptive Set Theory.Springer, New York, 1995. Zbl 0819.04002, MR 1321597 |
Reference:
|
[15] Laflamme C., Zhu J.-P.: The Rudin-Blass ordering of ultrafilters.J. Symbolic Logic 63 (1998), 584–592. Zbl 0911.04001, MR 1627310, 10.2307/2586852 |
Reference:
|
[16] Protasov I.V.: Normal ball structures.Mat. Stud. 20 (2003), 3–16. Zbl 1053.54503, MR 2019592 |
Reference:
|
[17] Protasov I.V.: Coronas of balleans.Topology Appl. 149 (2005), no. 1–3, 149–160. Zbl 1068.54036, MR 2130861, 10.1016/j.topol.2004.09.005 |
Reference:
|
[18] Protasov I.V.: Coronas of ultrametric spaces.Comment. Math. Univ. Carolin. 52 (2011), 303–307. Zbl 1240.54087, MR 2849052 |
Reference:
|
[19] Roe J.: Lectures on Coarse Geometry.American Mathematical Society, Providence, RI, 2003. Zbl 1042.53027, MR 2007488 |
Reference:
|
[20] Vaughan J.: Small uncountable cardinals and topology.in: Open Problems in Topology, 195–218, North-Holland, Amsterdam, 1990. MR 1078647 |
. |