Previous |  Up |  Next

Article

Title: On character of points in the Higson corona of a metric space (English)
Author: Banakh, Taras
Author: Chervak, Ostap
Author: Zdomskyy, Lubomyr
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 2
Year: 2013
Pages: 159-178
Summary lang: English
.
Category: math
.
Summary: We prove that for an unbounded metric space $X$, the minimal character $\mathsf m\chi(\check X)$ of a point of the Higson corona $\check X$ of $X$ is equal to $\mathfrak u$ if $X$ has asymptotically isolated balls and to $\max\{\mathfrak u,\mathfrak d\}$ otherwise. This implies that under $\mathfrak u < \mathfrak d$ a metric space $X$ of bounded geometry is coarsely equivalent to the Cantor macro-cube $2^{<\mathbb N}$ if and only if $\dim (\check X)=0$ and $\mathsf m\chi (\check X)= \mathfrak d$. This contrasts with a result of Protasov saying that under CH the coronas of any two asymptotically zero-dimensional unbounded metric separable spaces are homeomorphic. (English)
Keyword: Higson corona
Keyword: character of a point
Keyword: ultrafilter number
Keyword: dominating number
MSC: 03E17
MSC: 03E35
MSC: 03E50
MSC: 54D35
MSC: 54E35
MSC: 54F45
idZBL: Zbl 06221260
idMR: MR3067701
.
Date available: 2013-06-25T12:47:56Z
Last updated: 2015-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/143267
.
Reference: [1] Banakh T., Zarichnyi I.: Characterizing the Cantor bi-cube in asymptotic categories.Groups Geom. Dyn. 5 (2011), no. 4, 691–728. Zbl 1246.54023, MR 2836457, 10.4171/GGD/145
Reference: [2] Banakh T., Zarichnyi I.: A coarse characterization of the Baire macro-space.Proc. of Intern. Geometry Center 3 (2010), no. 4, 6–14 (available at http://arxiv.org/abs/1103.5118).
Reference: [3] Banakh T., Zdomskyy L.: The coherence of semifilters: a survey. Selection principles and covering properties in topology.53–105, Quad. Mat., 18, Dept. Math., Seconda Univ. Napoli, Caserta, 2006. MR 2395751
Reference: [4] Banakh T., Zdomskyy L.: Coherence of Semifilters.book in progress, http://www.franko.lviv.ua/faculty/mechmat/Departments/Topology/booksite.html. Zbl 1162.03026
Reference: [5] Bell G., Dranishnikov A.: Asymptotic dimension.Topology Appl. 155 (2008), no. 12, 1265–1296. MR 2423966
Reference: [6] Blass A.: Near coherence of filters, I. Cofinal equivalence of models of arithmetic.Notre Dame J. Formal Logic 27 (1986), 579–591. Zbl 0622.03040, MR 0867002, 10.1305/ndjfl/1093636772
Reference: [7] Blass A.: Combinatorial cardinal characteristics of the continuum.in: Handbook of Set Theory, Chapter 6, pp. 395–489, Springer, Dordrecht, 2010. MR 2768685, 10.1007/978-1-4020-5764-9_7
Reference: [8] Canjar M.: Cofinalities of countable ultraproducts: the existence theorem.Notre Dame J. Formal Logic 30 (1989), no. 4, 539–542. Zbl 0694.03029, MR 1036675, 10.1305/ndjfl/1093635237
Reference: [9] van Douwen E.: The integers and topology.in: Handbook of Set-theoretic Topology, 111–167, North-Holland, Amsterdam, 1984. Zbl 0561.54004, MR 0776622
Reference: [10] Dranishnikov A.: Asymptotic topology.Uspekhi Mat. Nauk 55 (2000), no. 6, 71–116. Zbl 1028.54032, MR 1840358
Reference: [11] Dranishnikov A.N., Keesling J., Uspenskij V.V.: On the Higson corona of uniformly contractible spaces.Topology 37 (1998), no. 4, 791–803. Zbl 0910.54026, MR 1607744, 10.1016/S0040-9383(97)00048-7
Reference: [12] Dranishnikov A., Zarichnyi M.: Universal spaces for asymptotic dimension.Topology Appl. 140 (2004), no. 2–3, 203–225. Zbl 1063.54027, MR 2074917
Reference: [13] Fremlin D.: Consequences of Martin's Axiom.Cambridge Tracts in Mathematics, 84, Cambridge University Press, London, 1984. Zbl 1156.03050
Reference: [14] Kechris A.: Classical Descriptive Set Theory.Springer, New York, 1995. Zbl 0819.04002, MR 1321597
Reference: [15] Laflamme C., Zhu J.-P.: The Rudin-Blass ordering of ultrafilters.J. Symbolic Logic 63 (1998), 584–592. Zbl 0911.04001, MR 1627310, 10.2307/2586852
Reference: [16] Protasov I.V.: Normal ball structures.Mat. Stud. 20 (2003), 3–16. Zbl 1053.54503, MR 2019592
Reference: [17] Protasov I.V.: Coronas of balleans.Topology Appl. 149 (2005), no. 1–3, 149–160. Zbl 1068.54036, MR 2130861, 10.1016/j.topol.2004.09.005
Reference: [18] Protasov I.V.: Coronas of ultrametric spaces.Comment. Math. Univ. Carolin. 52 (2011), 303–307. Zbl 1240.54087, MR 2849052
Reference: [19] Roe J.: Lectures on Coarse Geometry.American Mathematical Society, Providence, RI, 2003. Zbl 1042.53027, MR 2007488
Reference: [20] Vaughan J.: Small uncountable cardinals and topology.in: Open Problems in Topology, 195–218, North-Holland, Amsterdam, 1990. MR 1078647
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-2_4.pdf 328.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo