Previous |  Up |  Next

Article

Title: Universal meager $F_\sigma$-sets in locally compact manifolds (English)
Author: Banakh, Taras
Author: Repovš, Dušan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 2
Year: 2013
Pages: 179-188
Summary lang: English
.
Category: math
.
Summary: In each manifold $M$ modeled on a finite or infinite dimensional cube $[0,1]^n$, $n\leq \omega $, we construct a meager $F_\sigma$-subset $X\subset M$ which is universal meager in the sense that for each meager subset $A\subset M$ there is a homeomorphism $h:M\to M$ such that $h(A)\subset X$. We also prove that any two universal meager $F_\sigma$-sets in $M$ are ambiently homeomorphic. (English)
Keyword: universal nowhere dense subset
Keyword: Sierpiński carpet
Keyword: Menger cube
Keyword: Hilbert cube manifold
Keyword: $n$-manifold
Keyword: tame ball
Keyword: tame decomposition
MSC: 54F65
MSC: 57N20
MSC: 57N45
idZBL: Zbl 06221261
idMR: MR3067702
.
Date available: 2013-06-25T12:48:42Z
Last updated: 2015-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/143268
.
Reference: [1] Anderson R.D.: On sigma-compact subsets of infinite-dimensional manifolds.unpublished manuscript.
Reference: [2] Banakh T., Morayne M., Rałowski R., Żeberski S.: Topologically invariant $\sigma$-ideals on the Hilbert cube.preprint (http://arxiv.org/abs/1302.5658).
Reference: [3] Banakh T., Repovš D.: Universal nowhere dense subsets of locally compact manifolds.preprint (http://arxiv.org/abs/1302.5651).
Reference: [4] Bessaga C., Pelczyński A.: Selected topics in infinite-dimensional topology.PWN, Warsaw, 1975. Zbl 0304.57001, MR 0478168
Reference: [5] Cannon J.W.: A positional characterization of the $(n-1)$-dimensional Sierpinski curve in $S^n$ $(n\ne 4)$.Fund. Math. 79 (1973), no. 2, 107–112. MR 0319203
Reference: [6] Chapman T.A.: Dense sigma-compact subsets of infinite-dimensional manifolds.Trans. Amer. Math. Soc. 154 (1971), 399–426. Zbl 0208.51903, MR 0283828, 10.1090/S0002-9947-1971-0283828-7
Reference: [7] Chapman T.A.: Lectures on Hilbert Cube Manifolds.American Mathematical Society, Providence, R.I., 1976. Zbl 0528.57002, MR 0423357
Reference: [8] Chigogidze A.: Inverse Spectra.North-Holland Publishing Co., Amsterdam, 1996. Zbl 0934.54001, MR 1406565
Reference: [9] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [10] Engelking R.: Theory of dimensions finite and infinite.Heldermann Verlag, Lemgo, 1995. Zbl 0872.54002, MR 1363947
Reference: [11] Geoghegan R., Summerhill R.: Infinite-dimensional methods in finite-dimensional geometric topology.Bull. Amer. Math. Soc. 78 (1972), 1009–1014. Zbl 0256.57004, MR 0312501, 10.1090/S0002-9904-1972-13086-6
Reference: [12] Geoghegan R., Summerhill R.: Pseudo-boundaries and pseudo-interiors in Euclidean spaces and topological manifolds.Trans. Amer. Math. Soc. 194 (1974), 141–165. Zbl 0288.57001, MR 0356061, 10.1090/S0002-9947-1974-0356061-0
Reference: [13] Menger K.: Allgemeine Raume und Cartesische Raume Zweite Mitteilung: “Uber umfassendste $n$-dimensional Mengen".Proc. Akad. Amsterdam 29 (1926), 1125–1128.
Reference: [14] Sierpiński W.: Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée.C.R. Acad. Sci., Paris, 162 (1916), 629–632.
Reference: [15] Štanko M.A.: The embedding of compact into Euclidean space.Math USSR Sbornik 12 (1970), 234–254. 10.1070/SM1970v012n02ABEH000919
Reference: [16] West J.: The ambient homeomorphy of an incomplete subspace of infinite-dimensional Hilbert spaces.Pacific J. Math. 34 (1970), 257–267. Zbl 0198.46001, MR 0277011, 10.2140/pjm.1970.34.257
Reference: [17] Whyburn G.: Topological characterization of the Sierpinski curve.Fund. Math. 45 (1958), 320–324. Zbl 0081.16904, MR 0099638
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-2_5.pdf 252.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo