Title:
|
The sup = max problem for the extent of generalized metric spaces (English) |
Author:
|
Hirata, Yasushi |
Author:
|
Yajima, Yukinobu |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
54 |
Issue:
|
2 |
Year:
|
2013 |
Pages:
|
245-257 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
It looks not useful to study the sup = max problem for extent, because there are simple examples refuting the condition. On the other hand, the sup = max problem for Lindelöf degree does not occur at a glance, because Lindelöf degree is usually defined by not supremum but minimum. Nevertheless, in this paper, we discuss the sup = max problem for the extent of generalized metric spaces by combining the sup = max problem for the Lindelöf degree of these spaces. (English) |
Keyword:
|
extent |
Keyword:
|
Lindelöf degree |
Keyword:
|
$\Sigma$-space |
Keyword:
|
strict $p$-space |
Keyword:
|
semi-stratifiable |
MSC:
|
03E10 |
MSC:
|
54A25 |
MSC:
|
54D20 |
MSC:
|
54E18 |
idZBL:
|
Zbl 06221266 |
idMR:
|
MR3067707 |
. |
Date available:
|
2013-06-25T12:53:25Z |
Last updated:
|
2015-07-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143273 |
. |
Reference:
|
[1] Aull C.E.: A generalization of a theorem of Aquaro.Bull. Austral. Math. Soc. 9 (1973), 105–108. Zbl 0255.54015, MR 0372817, 10.1017/S0004972700042933 |
Reference:
|
[2] Burke D.K.: On $p$-spaces and $w\Delta$-spaces.Pacific J. Math. 35 (1970), 285–296. Zbl 0204.55703, MR 0278255, 10.2140/pjm.1970.35.285 |
Reference:
|
[3] Creed G.D.: Concerning semi-stratifiable spaces.Pacific J. Math. 32 (1970), 47–54. MR 0254799, 10.2140/pjm.1970.32.47 |
Reference:
|
[4] Gruenhage G.: Generalized metric spaces.Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 423–501. Zbl 0794.54034, MR 0776629 |
Reference:
|
[5] Hajnal A., Juhász I.: Discrete subspaces of topological spaces II.Indag. Math. 31 (1969), 18–30. Zbl 0169.53901, MR 0264585, 10.1016/1385-7258(69)90022-5 |
Reference:
|
[6] Hajnal A., Juhász I.: Some remarks on a property of topological cardinal functions.Acta Math. Acad. Sci. Hungar. 20 (1969), 25–37. Zbl 0184.26401, MR 0242103, 10.1007/BF01894566 |
Reference:
|
[7] Jiang S.: Every strict p-space is $\theta $-refinable.Topology Proc. 11 (1986), 309–316. Zbl 0637.54024, MR 0945506 |
Reference:
|
[8] Jones F.B.: Concering normal and completely normal spaces.Bull. Amer. Math. Soc. 43 (1937), 671–677. MR 1563615, 10.1090/S0002-9904-1937-06622-5 |
Reference:
|
[9] Juhász I.: Cardinal Functions in Topology.Mathematisch Centrum, Amsterdam, 1971. MR 0340021 |
Reference:
|
[10] Juhász I.: Cardinal Functions in Topology – Ten Years Later.Mathematisch Centrum, Amsterdam, 1980. Zbl 0479.54001, MR 0576927 |
Reference:
|
[11] Kunen K., Roitman J.: Attaining the spread at cardinals of cofinality $\omega $.Pacific J. Math. 70 (1977), 199–205. Zbl 0375.54004, MR 0462949, 10.2140/pjm.1977.70.199 |
Reference:
|
[12] Nagami K.: $\varSigma$-spaces.Fund. Math. 65 (1969), 169–192. MR 0257963 |
Reference:
|
[13] Okuyama A.: On a generalization of $\varSigma$-spaces.Pacific J. Math 42 (1972), 485–495. MR 0313995, 10.2140/pjm.1972.42.485 |
Reference:
|
[14] Roitman J.: The spread of regular spaces.General Topology and Appl. 8 (1978), 85–91. Zbl 0398.54001, MR 0493957, 10.1016/0016-660X(78)90020-X |
. |