Previous |  Up |  Next

Article

Title: Compacta are maximally $G_\delta$-resolvable (English)
Author: Juhász, István
Author: Szentmiklóssy, Zoltán
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 2
Year: 2013
Pages: 259-261
Summary lang: English
.
Category: math
.
Summary: It is well-known that compacta (i.e. compact Hausdorff spaces) are maximally resolvable, that is every compactum $X$ contains $\Delta(X)$ many pairwise disjoint dense subsets, where $\Delta(X)$ denotes the minimum size of a non-empty open set in $X$. The aim of this note is to prove the following analogous result: Every compactum $X$ contains $\Delta_\delta(X)$ many pairwise disjoint $G_\delta$-dense subsets, where $\Delta_\delta(X)$ denotes the minimum size of a non-empty $G_\delta$ set in $X$. (English)
Keyword: compact spaces
Keyword: $G_\delta $-sets
Keyword: resolvability
MSC: 03E10
MSC: 54A25
MSC: 54D30
idZBL: Zbl 06221267
idMR: MR3067708
.
Date available: 2013-06-25T12:54:14Z
Last updated: 2015-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/143274
.
Reference: [1] Čech E., Pospíšil B.: Sur les espaces compacts.Publ. Fac. Sci. Univ. Masaryk 258 (1938), 1–14. Zbl 0019.08903
Reference: [2] Comfort W.W., Garcia-Ferreira S.: Resolvability: A selective survey and some new results.Topology Appl. 74 (1996), 149–167. Zbl 0866.54004, MR 1425934, 10.1016/S0166-8641(96)00052-1
Reference: [3] El'kin A.G.: Resolvable spaces which are not maximally resolvable.Vestnik Moskov. Univ. Ser. I Mat. Meh. 24 (1969), no. 4, 66–70. Zbl 0243.54018, MR 0256331
Reference: [4] Juhász I.: Cardinal functions in topology – 10 years later.Mathematical Centre Tracts, 123, Mathematisch Centrum, Amsterdam, 1980.
Reference: [5] Juhász I.: On the minimum character of points in compact spaces.in: Proc. Top. Conf. (Pécs, 1989), 365–371, Colloq. Math. Soc. János Bolyai, 55, North-Holland, Amsterdam, 1993. Zbl 0798.54005, MR 1244377
Reference: [6] Juhász I., Szentmiklóssy Z.: Convergent free sequences in compact spaces.Proc. Amer. Math. Soc. 116 (1992), 1153–1160. Zbl 0767.54002, MR 1137223, 10.2307/2159502
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-2_11.pdf 171.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo