Previous |  Up |  Next

Article

Title: Existence and global attractivity of positive periodic solutions for a delayed competitive system with the effect of toxic substances and impulses (English)
Author: Xu, Changjin
Author: Zhang, Qianhong
Author: Liao, Maoxin
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 58
Issue: 3
Year: 2013
Pages: 309-328
Summary lang: English
.
Category: math
.
Summary: In this paper, a class of non-autonomous delayed competitive systems with the effect of toxic substances and impulses is considered. By using the continuation theorem of coincidence degree theory, we derive a set of easily verifiable sufficient conditions that guarantees the existence of at least one positive periodic solution, and by constructing a suitable Lyapunov functional, the uniqueness and global attractivity of the positive periodic solution are established. (English)
Keyword: competitive system
Keyword: toxic substance
Keyword: periodic solution
Keyword: impulse
Keyword: coincidence degree theory
MSC: 34K13
MSC: 34K20
MSC: 34K25
MSC: 34K45
MSC: 92D40
idZBL: Zbl 06221233
idMR: MR3066823
DOI: 10.1007/s10492-013-0015-5
.
Date available: 2013-05-17T10:44:48Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143280
.
Reference: [1] Barbălat, I.: Systèmes d'équations différentielles d'oscillations non linéaires.Acad. Républ. Popul. Roum., Rev. Math. Pur. Appl. 4 (1959), French 267-270. Zbl 0090.06601, MR 0111896
Reference: [2] Chen, F.: Almost periodic solution of the non-autonomous two-species competitive model with stage structure.Appl. Math. Comput. 181 (2006), 685-693. Zbl 1163.34030, MR 2270525, 10.1016/j.amc.2006.01.055
Reference: [3] Chen, S., Wang, T., Zhang, J.: Positive periodic solution for non-autonomous competition Lotka-Volterra patch system with time delay.Nonlinear Anal., Real World Appl. 5 (2004), 409-419. Zbl 1093.34033, MR 2059213
Reference: [4] Dong, L., Chen, L., Shi, P.: Periodic solutions for a two-species nonautonomous competition system with diffusion and impulses.Chaos Solitons Fractals 32 (2007), 1916-1926. Zbl 1168.34360, MR 2299102, 10.1016/j.chaos.2006.01.003
Reference: [5] Fan, M., Wang, K., Jiang, D.: Existence and global attractivity of positive periodic solutions to periodic $n$-species Lotka-Volterra competition systems with several deviating arguments.Math. Biosci. 160 (1999), 47-61. Zbl 0964.34059, MR 1704338, 10.1016/S0025-5564(99)00022-X
Reference: [6] Gaines, R. E., Mawhin, J. L.: Coincidence Degree, and Nonlinear Differential Equations, Lecture Notes in Mathematics 568.Springer Berlin (1977). MR 0637067, 10.1007/BFb0089537
Reference: [7] Li, Z., Chen, F.: Extinction in periodic competitive stage-structured Lotka-Volterra model with the effects of toxic substances.J. Comput. Appl. Math. 231 (2009), 143-153. Zbl 1165.92322, MR 2532657, 10.1016/j.cam.2009.02.004
Reference: [8] Liu, Z., Chen, L.: Periodic solution of a two-species competitive system with toxicant and birth pulse.Chaos Solitons Fractals 32 (2007), 1703-1712. Zbl 1137.34017, MR 2299084, 10.1016/j.chaos.2005.12.004
Reference: [9] Liu, Z., Hui, J., Wu, J.: Permanence and partial extinction in an impulsive delay competitive system with the effect of toxic substances.J. Math. Chem. 46 (2009), 1213-1231. Zbl 1197.92046, MR 2545587, 10.1007/s10910-008-9513-1
Reference: [10] Nie, L., Peng, J., Teng, Z.: Permanence and stability in multi-species non-autonomous Lotka-Volterra competitive systems with delays and feedback controls.Math. Comput. Modelling 49 (2009), 295-306. Zbl 1165.34373, MR 2480052, 10.1016/j.mcm.2008.05.004
Reference: [11] Shen, J., Li, J.: Existence and global attractivity of positive periodic solutions for impulsive predator-prey model with dispersion and time delays.Nonlinear Anal., Real World Appl. 10 (2009), 227-243. Zbl 1154.34372, MR 2451704
Reference: [12] Song, X., Chen, L.: Periodic solution of a delay differential equation of plankton allelopathy.Acta Math. Sci., Ser. A, Chin. Ed. 23 (2003), 8-13 Chinese. Zbl 1036.34082, MR 1958183
Reference: [13] Tang, X. H., Zou, X.: Global attractivity of non-autonomous Lotka-Volterra competition system without instantaneous negative feedback.J. Differ. Equations 192 (2003), 502-535. Zbl 1035.34085, MR 1990850, 10.1016/S0022-0396(03)00042-1
Reference: [14] Tang, X., Cao, D., Zou, X.: Global attractivity of positive periodic solution to periodic Lotka-Volterra competition systems with pure delay.J. Differ. Equations 228 (2006), 580-610. Zbl 1113.34052, MR 2289545, 10.1016/j.jde.2006.06.007
Reference: [15] Xia, Y.: Positive periodic solutions for a neutral impulsive delayed Lotka-Volterra competition system with the effect of toxic substance.Nonlinear Anal., Real World Appl. 8 (2007), 204-221. Zbl 1121.34075, MR 2268079
Reference: [16] Xu, R., Chaplain, M. A. J., Davidson, F. A.: Periodic solution of a Lotka-Volterra predator-prey model with dispersion and time delays.Appl. Math. Comput. 148 (2004), 537-560. Zbl 1048.34119, MR 2015390, 10.1016/S0096-3003(02)00918-9
Reference: [17] Yan, J., Zhao, A.: Oscillation and stability of linear impusive delay differential equations.J. Math. Anal. Appl. 227 (1998), 187-194. MR 1652915, 10.1006/jmaa.1998.6093
Reference: [18] Yoshizawa, T.: Stability Theory by Ljapunov's Second Method, Publications of the Mathematical Society of Japan. Vol. 9.The Mathematical Society of Japan Tokyo (1966). MR 0208086
.

Files

Files Size Format View
AplMat_58-2013-3_4.pdf 299.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo