Title:
|
Optimal design of an elastic beam with a unilateral elastic foundation: semicoercive state problem (English) |
Author:
|
Šimeček, Roman |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
58 |
Issue:
|
3 |
Year:
|
2013 |
Pages:
|
329-346 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A design optimization problem for an elastic beam with a unilateral elastic foundation is analyzed. Euler-Bernoulli's model for the beam and Winkler's model for the foundation are considered. The state problem is represented by a nonlinear semicoercive problem of 4th order with mixed boundary conditions. The thickness of the beam and the stiffness of the foundation are optimized with respect to a cost functional. We establish solvability conditions for the state problem and study the existence of a solution to the optimization problem. (English) |
Keyword:
|
shape optimization |
Keyword:
|
semicoercive beam problem |
Keyword:
|
unilateral foundation |
MSC:
|
49J15 |
MSC:
|
49K15 |
MSC:
|
65K10 |
MSC:
|
74B99 |
MSC:
|
74K10 |
MSC:
|
74P05 |
idZBL:
|
Zbl 06221234 |
idMR:
|
MR3066824 |
DOI:
|
10.1007/s10492-013-0016-4 |
. |
Date available:
|
2013-05-17T10:45:58Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143281 |
. |
Reference:
|
[1] Aubin, J. P.: Applied Functional Analysis, 2nd edition.Wiley-Interscience New York (2000). MR 1782330 |
Reference:
|
[2] Chleboun, J.: Optimal design of an elastic beam on an elastic basis.Apl. Mat. 31 (1986), 118-140. Zbl 0606.73108, MR 0837473 |
Reference:
|
[3] Fučík, S., Kufner, A.: Nonlinear Differential Equations. Studies in Applied Mechanics, Vol. 2.Elsevier New York (1980). MR 0558764 |
Reference:
|
[4] Haslinger, J., Mäkinen, R. A. E.: Introduction to Shape Optimization: Theory, Approximation and Computation.SIAM Philadelphia (2003). Zbl 1020.74001, MR 1969772 |
Reference:
|
[5] Haslinger, J., Neittaanmäki, P.: Finite Element Approximation for Optimal Shape, Material and Topology Design.J. Wiley & Sons Chichester (1996). MR 1419500 |
Reference:
|
[6] Hlaváček, I., Bock, I., Lovíšek, J.: Optimal control of a variational inequality with applications to structural analysis. I: Optimal design of a beam with unilateral supports.Appl. Math. Optim. 11 (1984), 111-143. Zbl 0553.73082, MR 0743922, 10.1007/BF01442173 |
Reference:
|
[7] Horák, J. V., Netuka, I.: Mathematical model of pseudointeractive set: 1D body on nonlinear subsoil. I. Theoretical aspects.Engineering Mechanics 14 (2007), 3311-3325. |
Reference:
|
[8] Horák, J. V., Šimeček, R.: ANSYS implementation of shape design optimization problems.ANSYS conference 2008, 16. ANSYS FEM Users' Meeting, Luhačovice, 5.--7. November 2008 SVS-FEM Brno (2008), released on CD. |
Reference:
|
[9] Kufner, A., John, O., Fučík, S.: Function Spaces.Noordhoof International Publishing/Academia Praha Nordhoof/Prague (1977). MR 0482102 |
Reference:
|
[10] Nečas, J., Hlaváček, I.: Mathematical Theory of Elastic and Elasto-Plastic Bodies. An Introduction.Elsevier Amsterdam (1980). MR 0600655 |
Reference:
|
[11] Netuka, H., Horák, J. V.: System beam-spring-foundation after two years.Proceedings, Conference ``Olomouc Days of Applied Mathematics ODAM 2007'' (2007), 18-42 Czech. |
Reference:
|
[12] Salač, P.: Shape optimization of elastic axisymmetric plate on an elastic foundation.Appl. Math. 40 (1995), 319-338. Zbl 0839.73036, MR 1331921 |
Reference:
|
[13] Sysala, S.: Unilateral subsoil of Winkler's type: Semi-coercive beam problem.Appl. Math. 53 (2008), 347-379. MR 2433726, 10.1007/s10492-008-0030-0 |
. |