Previous |  Up |  Next

Article

Title: Impulsive stabilization of high-order nonlinear retarded differential equations (English)
Author: Liu, Juan
Author: Li, Xiaodi
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 58
Issue: 3
Year: 2013
Pages: 347-367
Summary lang: English
.
Category: math
.
Summary: In this paper, impulsive stabilization of high-order nonlinear retarded differential equations is investigated by using Lyapunov functions and some analysis methods. Our results show that several non-impulsive unstable systems can be stabilized by imposition of impulsive controls. Some recent results are extended and improved. An example is given to demonstrate the effectiveness of the proposed control and stabilization methods. (English)
Keyword: high-order nonlinear retarded differential equation
Keyword: Lyapunov function
Keyword: impulsive stabilization
Keyword: exponential stability
MSC: 34A37
MSC: 34H15
MSC: 34K20
MSC: 34K45
idZBL: Zbl 06221235
idMR: MR3066825
DOI: 10.1007/s10492-013-0017-3
.
Date available: 2013-05-17T10:47:29Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143282
.
Reference: [1] Bainov, D. D., Simeonov, P. S.: Systems with Impulsive Effect: Stability, Theory and Applications.Ellis Horwood New York (1989). MR 1010418
Reference: [2] Fu, X., Yan, B., Liu, Y.: Introduction of Impulsive Differential Systems.Science Press Beijing (2005).
Reference: [3] Gimenes, L. P., Federson, M.: Existence and impulsive stability for second order retarded differential equations.Appl. Math. Comput. 177 (2006), 44-62. Zbl 1105.34049, MR 2234496, 10.1016/j.amc.2005.10.038
Reference: [4] Gimenes, L. P., Federson, M., Táboas, P.: Impulsive stability for systems of second order retarded differential equations.Nonlinear Anal., Theory Methods Appl. 67 (2007), 545-553. Zbl 1125.34061, MR 2317186, 10.1016/j.na.2006.06.006
Reference: [5] Khadra, A., Liu, X., Shen, X.: Application of impulsive synchronization to communication security.IEEE Trans. Circuits Systems I Fund. Theory Appl. 50 (2003), 341-351. MR 1984762, 10.1109/TCSI.2003.808839
Reference: [6] Lakshmikantham, V., Bajnov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations.World Scientific Singapore (1989). Zbl 0719.34002, MR 1082551
Reference: [7] Li, X.: Exponential stability of Hopfield neural networks with time-varying delays via impulsive control.Math. Methods Appl. Sci. 33 (2010), 1596-1604. Zbl 1247.34026, MR 2680669, 10.1002/mma.1278
Reference: [8] Li, X.: New results on global exponential stabilization of impulsive functional differential equations with infinite delays or finite delays.Nonlinear Anal., Real World Appl. 11 (2010), 4194-4201. Zbl 1210.34103, MR 2683867
Reference: [9] Li, X., Weng, P.: Impulsive stabilization of a class of nonlinear differential equations.Appl. Math., Ser. A (Chin. Ed.) 18 (2003), 408-416. Zbl 1050.34087, MR 2023583
Reference: [10] Liu, X.: Impulsive stabilization and applications to population growth models.Rocky Mt. J. Math. 25 (1995), 381-395. Zbl 0832.34039, MR 1340015, 10.1216/rmjm/1181072290
Reference: [11] Liu, X., Ballinger, G.: Existence and continuability of solutions for differential equations with delays and state-dependent impulses.Nonlinear Anal., Theory Methods Appl. 51 (2002), 633-647. Zbl 1015.34069, MR 1920341, 10.1016/S0362-546X(01)00847-1
Reference: [12] Luo, Z., Shen, J.: Impulsive stabilization of functional differential equations with infinite delays.Appl. Math. Lett. 16 (2003), 695-701. Zbl 1068.93054, MR 1986037, 10.1016/S0893-9659(03)00069-7
Reference: [13] Prussing, J. E., Wellnitz, L. J., Heckathorn, W. G.: Optimal impulsive time-fixed directascent interception.J. Guidance Control Dynam. 12 (1989), 487-494. MR 1005019, 10.2514/3.20436
Reference: [14] Weng, A., Sun, J.: Impulsive stabilization of second-order delay differential equations.Nonlinear Anal., Real World Appl. 8 (2007), 1410-1420. Zbl 1136.93036, MR 2344990
Reference: [15] Yang, T.: Impulsive Systems and Control: Theory and Applications.Nova Science Publishers New York (2001).
Reference: [16] Zhang, H., Jiao, J., Chen, L.: Pest management through continuous and impulsive control strategies.BioSystems 90 (2007), 350-361. 10.1016/j.biosystems.2006.09.038
.

Files

Files Size Format View
AplMat_58-2013-3_6.pdf 290.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo