# Article

Keywords:
homomorphism; Fréchet functional equation; Jensen functional equation; symmetric bihomomorphism; Whitehead functional equation
Summary:
Let $G$ be a group and $H$ an abelian group. Let $J^{*} (G, H)$ be the set of solutions $f \colon G \to H$ of the Jensen functional equation $f(xy)+f(xy^{-1}) = 2f(x)$ satisfying the condition $f(xyz) - f(xzy) = f(yz)-f(zy)$ for all $x, y , z \in G$. Let $Q^{*} (G, H)$ be the set of solutions $f \colon G \to H$ of the quadratic equation $f(xy)+f(xy^{-1}) = 2f(x) + 2f(y)$ satisfying the Kannappan condition $f(xyz) = f(xzy)$ for all $x, y, z \in G$. In this paper we determine solutions of the Whitehead equation on groups. We show that every solution $f \colon G \to H$ of the Whitehead equation is of the form $4f = 2 \varphi + 2 \psi$, where $2\varphi \in J^* (G, H)$ and $2\psi \in Q^* (G, H)$. Moreover, if $H$ has the additional property that $2h = 0$ implies $h = 0$ for all $h \in H$, then every solution $f \colon G \to H$ of the Whitehead equation is of the form $2f = \varphi + \psi$, where $\varphi \in J^*(G,H)$ and $2\psi (x) = B(x, x)$ for some symmetric bihomomorphism $B \colon G \times G \to H$.
References:
 Kannappan, Pl.: Quadratic functional equation and inner product spaces. Results Math. 27 (1995), 368-372. DOI 10.1007/BF03322841 | MR 1331110 | Zbl 0836.39006
 Kannappan, Pl.: Functional Equations and Inequalities with Applications. Springer Monographs in Mathematics, Springer, New York (2009). MR 2524097 | Zbl 1178.39032
 Ng, C. T.: Jensen's functional equation on groups. Aequationes Math. 39 (1990), 85-99. DOI 10.1007/BF01833945 | MR 1044167 | Zbl 0688.39007
 Friis, P. de Place, Stetkær, H.: On the quadratic functional equation on groups. Publ. Math. Debrecen 69 (2006), 65-93. MR 2228477
 Whitehead, J. H. C.: A certain exact sequence. Ann. Math. (2) 52 (1950), 51-110. DOI 10.2307/1969511 | MR 0035997 | Zbl 0037.26101
 Yang, D.: The quadratic functional equation on groups. Publ. Math. Debrecen 66 (2005), 327-348. MR 2137773 | Zbl 1100.39028