Previous |  Up |  Next

Article

Title: Solution of Whitehead equation on groups (English)
Author: Faĭziev, Valeriĭ A.
Author: Sahoo, Prasanna K.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 138
Issue: 2
Year: 2013
Pages: 171-180
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a group and $H$ an abelian group. Let $J^{*} (G, H)$ be the set of solutions $f \colon G \to H$ of the Jensen functional equation $f(xy)+f(xy^{-1}) = 2f(x)$ satisfying the condition $f(xyz) - f(xzy) = f(yz)-f(zy)$ for all $x, y , z \in G$. Let $Q^{*} (G, H)$ be the set of solutions $f \colon G \to H$ of the quadratic equation $f(xy)+f(xy^{-1}) = 2f(x) + 2f(y)$ satisfying the Kannappan condition $f(xyz) = f(xzy)$ for all $x, y, z \in G$. In this paper we determine solutions of the Whitehead equation on groups. We show that every solution $f \colon G \to H$ of the Whitehead equation is of the form $4f = 2 \varphi + 2 \psi $, where $2\varphi \in J^* (G, H)$ and $2\psi \in Q^* (G, H)$. Moreover, if $H$ has the additional property that $2h = 0$ implies $h = 0$ for all $h \in H$, then every solution $f \colon G \to H$ of the Whitehead equation is of the form $2f = \varphi + \psi $, where $\varphi \in J^*(G,H)$ and $2\psi (x) = B(x, x)$ for some symmetric bihomomorphism $B \colon G \times G \to H$. (English)
Keyword: homomorphism
Keyword: Fréchet functional equation
Keyword: Jensen functional equation
Keyword: symmetric bihomomorphism
Keyword: Whitehead functional equation
MSC: 39B52
idZBL: Zbl 06221247
idMR: MR3112363
DOI: 10.21136/MB.2013.143289
.
Date available: 2013-05-27T14:25:33Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143289
.
Reference: [1] Kannappan, Pl.: Quadratic functional equation and inner product spaces.Results Math. 27 (1995), 368-372. Zbl 0836.39006, MR 1331110, 10.1007/BF03322841
Reference: [2] Kannappan, Pl.: Functional Equations and Inequalities with Applications.Springer Monographs in Mathematics, Springer, New York (2009). Zbl 1178.39032, MR 2524097
Reference: [3] Ng, C. T.: Jensen's functional equation on groups.Aequationes Math. 39 (1990), 85-99. Zbl 0688.39007, MR 1044167, 10.1007/BF01833945
Reference: [4] Friis, P. de Place, Stetkær, H.: On the quadratic functional equation on groups.Publ. Math. Debrecen 69 (2006), 65-93. MR 2228477
Reference: [5] Whitehead, J. H. C.: A certain exact sequence.Ann. Math. (2) 52 (1950), 51-110. Zbl 0037.26101, MR 0035997, 10.2307/1969511
Reference: [6] Yang, D.: The quadratic functional equation on groups.Publ. Math. Debrecen 66 (2005), 327-348. Zbl 1100.39028, MR 2137773
.

Files

Files Size Format View
MathBohem_138-2013-2_6.pdf 221.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo