Previous |  Up |  Next

Article

Title: Some surjectivity theorems with applications (English)
Author: Pathak, H. K.
Author: Mishra, S. N.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 49
Issue: 1
Year: 2013
Pages: 17-27
Summary lang: English
.
Category: math
.
Summary: In this paper a new class of mappings, known as locally $\lambda $-strongly $\phi $-accretive mappings, where $\lambda $ and $\phi $ have special meanings, is introduced. This class of mappings constitutes a generalization of the well-known monotone mappings, accretive mappings and strongly $\phi $-accretive mappings. Subsequently, the above notion is used to extend the results of Park and Park, Browder and Ray to locally $\lambda $-strongly $\phi $-accretive mappings by using Caristi-Kirk fixed point theorem. In the sequel, we introduce the notion of generalized directional contractor and prove a surjectivity theorem which is used to solve certain functional equations in Banach spaces. (English)
Keyword: strongly $\phi $-accretive
Keyword: locally strongly $\phi $-accretive
Keyword: locally $\lambda $-strongly $\phi $-accretive
Keyword: fixed point theorem
MSC: 47H05
MSC: 47H15
idZBL: Zbl 06321144
idMR: MR3073012
DOI: 10.5817/AM2013-1-17
.
Date available: 2013-05-28T13:26:21Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143296
.
Reference: [1] Altman, M.: Contractor directions, directional contractors and directional contractions for solving equations.Pacific J. Math. 62 (1976), 1–18. Zbl 0352.47027, MR 0473939, 10.2140/pjm.1976.62.1
Reference: [2] Altman, M.: Contractors and contractor directions theory and applications.Marcel Dekker, New York, 1977. Zbl 0363.65045, MR 0451686
Reference: [3] Altman, M.: Weak contractor directions and weak directional contractions.Nonlinear Anal. 7 (1983), 1043–1049. Zbl 0545.47034, MR 0713214
Reference: [4] Browder, F. E.: Normal solvability and existence theorems for nonlinear mappings in Banach spaces.Problems in Nonlinear Analysis (C.I.M.E., IV Ciclo, Varenna, 1970), pp. 17–35, Edizioni Cremones, Rome, Italy, 1971. Zbl 0234.47056, MR 0467430
Reference: [5] Browder, F. E.: Normal solvability for nonlinear mappings and the geometry of Banach spaces.Problems in Nonlinear Analysis,C.I.M.E., IV Ciclo, Varenna, 1970, pp. 37–66, Edizioni Cremonese, Rome, Italy, 1971. Zbl 0234.47055, MR 0438201
Reference: [6] Browder, F. E.: Normal solvability $\phi $–accretive mappings of Banach spaces.Bull. Amer. Math. Soc. 78 (1972), 186–192. MR 0306992, 10.1090/S0002-9904-1972-12907-0
Reference: [7] Browder, F. E.: Nonlinear operators and nonlinear equations of evolution in Banach spaces.Proc. Sympos. Pure Math., vol. 18, Amer. Math. Soc., Providence, 1976. Zbl 0327.47022, MR 0405188
Reference: [8] Caristi, J.: Fixed point theorems for mappings satisfying inwardness conditions.Trans. Amer. Math. Soc. 215 (1976), 241–251. Zbl 0305.47029, MR 0394329, 10.1090/S0002-9947-1976-0394329-4
Reference: [9] Ekeland, I.: Sur les problems variationnels.C. R. Acad. Sci. Paris Sér. I Math. 275 (1972), 1057–1059. MR 0310670
Reference: [10] Goebel, K., Kirk, W. A.: Topics in metric fixed point theory.Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, 1990. Zbl 0708.47031, MR 1074005
Reference: [11] Kirk, W. A.: Caristi’s fixed point theorem and the theory of normal solvability.Proc. Conf. Fixed Point Theory and its Applications (Dalhousie Univ., June 1975), Academic Press, 1976, pp. 109–120. Zbl 0377.47042, MR 0454754
Reference: [12] Park, J. A., Park, S.: Surjectivity of $\phi $–accretive operators.Proc. Amer. Math. Soc. 90 (2) (1984), 289–292. MR 0727252
Reference: [13] Ray, W. O.: Phi–accretive operators and Ekeland’s theorem.J. Math. Anal. Appl. 88 (1982), 566–571. Zbl 0497.47034, MR 0667080, 10.1016/0022-247X(82)90215-3
Reference: [14] Ray, W. O., Walker, A. M.: Mapping theorems for Gâteaux differentiable and accretive operators.Nonlinear Anal. 6 (5) (1982), 423–433. Zbl 0488.47031, MR 0661709, 10.1016/0362-546X(82)90057-8
.

Files

Files Size Format View
ArchMathRetro_049-2013-1_3.pdf 435.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo