Previous |  Up |  Next

Article

Title: On those ordinary differential equations that are solved exactly by the improved Euler method (English)
Author: Rivertz, Hans Jakob
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 49
Issue: 1
Year: 2013
Pages: 29-34
Summary lang: English
.
Category: math
.
Summary: As a numerical method for solving ordinary differential equations $y^{\prime }=f(x,y)$, the improved Euler method is not assumed to give exact solutions. In this paper we classify all cases where this method gives the exact solution for all initial conditions. We reduce an infinite system of partial differential equations for $f(x,y)$ to a finite system that is sufficient and necessary for the improved Euler method to give the exact solution. The improved Euler method is the simplest explicit second order Runge-Kutta method. (English)
Keyword: extended Euler
Keyword: numerics
Keyword: ordinary differential equations
MSC: 34A99
idZBL: Zbl 06321145
idMR: MR3073013
DOI: 10.5817/AM2013-1-29
.
Date available: 2013-05-28T13:27:43Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143297
.
Reference: [1] Agarwal, R. P.: Difference equations and inequalities: Theory, methods, and applications.Pure and Applied Mathematics, 228, Marcel Dekker, 2000. Zbl 0952.39001, MR 1740241
Reference: [2] Butcher, J. C., Wanner, G.: Runge–Kutta methods: some historical notes.Appl. Numer. Math. 22 (1996), 113–151. Zbl 0867.65038, MR 1424293, 10.1016/S0168-9274(96)00048-7
Reference: [3] Carr, J. W., III, : Error bounds for the Runge–Kutta single–step integration process.J. Assoc. Comput. Mach. 5 (1958), 39–44. MR 0094908, 10.1145/320911.320916
Reference: [4] Cieśliński, J. L.: On the exact discretization of the classical harmonic oscillator equation.J. Differ. Equations Appl. 17 (11) (2011), 1673–1694. Zbl 1232.65175, MR 2846507, 10.1080/10236191003730563
Reference: [5] Cieśliński, J. L., Ratkiewicz, B.: Energy–preserving numerical schemes of high accuracy for one–dimensional Hamiltonian systems.J. Phys. A 44 (2011), 1751–8113. Zbl 1218.65144, MR 2783644, 10.1088/1751-8113/44/15/155206
Reference: [6] Euler, L.: Institutionum calculi integralis.Impensis Academiae Imperialis Scientiarum, 1768–1770.
Reference: [7] Galler, B. A., Rozenberg, D. P.: A generalization of a theorem of Carr on error bounds for Runge-Kutta procedures.J. Assoc. Comput. Mach. 7 (1960), 57–60. Zbl 0096.10101, MR 0145673, 10.1145/321008.321015
Reference: [8] González–Pinto, S., Hernández–Abreu, D.: Global error estimates for a uniparametric family of stiffly accurate Runge–Kutta collocation methods on singularly perturbed problems.BIT 51 (1) (2011), 155–175. Zbl 1217.65158, MR 2784657, 10.1007/s10543-010-0304-2
Reference: [9] Hairer, E., Lubich, Ch., Roche, M.: Error of Runge–Kutta methods for stiff problems studied via differential algebraic equations.BIT 28 (1988), 678–700. Zbl 0657.65093, MR 0963310, 10.1007/BF01941143
Reference: [10] Ixaru, L. G., Vanden Berghe, G.: Exponential fitting.Kluwer Academic Publishers, 2004. Zbl 1105.65082, MR 2174666
Reference: [11] Lotkin, M.: On the accuracy of Runge–Kutta’s method.Math. Tables Aids Comput. 5 (1951), 128–133. Zbl 0044.33104, MR 0043566, 10.2307/2002436
Reference: [12] Mickens, R. E.: Nonstandard finite difference models of differential equations.World Scientific Publishing Co. Inc., 1994. Zbl 0810.65083, MR 1275372
Reference: [13] Potts, R. B.: Differential and difference equations.Amer. Math. Monthly 89 (1982), 402–407. Zbl 0498.34049, MR 0660921, 10.2307/2321656
Reference: [14] Ralston, A.: Runge–Kutta methods with minimum error bounds.Math. Comput. 16 (1962), 431–437. Zbl 0105.31903, MR 0150954, 10.1090/S0025-5718-1962-0150954-0
Reference: [15] Runge, C.: Über die numerische Auflösung von Differentialgleichungen.Math. Ann. 46 (1895), 167–178. MR 1510879, 10.1007/BF01446807
Reference: [16] Runge, C.: Über die numerische Auflösung von totaler Differentialgleichungen.Gött. Nachr. (1905).
.

Files

Files Size Format View
ArchMathRetro_049-2013-1_4.pdf 429.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo