Previous |  Up |  Next


nonlinear differential system; Picone identity; Wirtinger inequality
Picone identity for a class of nonlinear differential equations is established and various qualitative results (such as Wirtinger-type inequality and the existence of zeros of first components of solutions) are obtained with the help of this new formula.
[1] Elbert, Á.: A half-linear second order differential equation. Colloq. Math. János Bolyai 30 (1979), 153–180. MR 0680591
[2] Jaroš, J., Kusano, T.: On forced second order half–linear equations. Proceedings of the Symposium on the Structure and Methods of Functional Differential Equations, RIMS, Kokyuroku 984, Kyoto University, 1997, in Japanese, pp. 191–197.
[3] Jaroš, J., Kusano, T.: A Picone–type identity for second order half–linear differential equations. Acta Math. Univ. Comenian. (N.S.) 68 (1999), 137–151. MR 1711081 | Zbl 0926.34023
[4] Kreith, K.: A Picone identity for first order systems. J. Math. Anal. Appl. 31 (1970), 297–308. DOI 10.1016/0022-247X(70)90024-7 | MR 0261088
[5] Kreith, K.: A class of comparison theorems for nonselfadjoint elliptic equations. Proc. Amer. Math. Soc. 29 (1971), 547–552. MR 0279418 | Zbl 0231.35021
[6] Kreith, K.: Oscillation theory. Lecture Notes in Math., vol. 324, Springer, 1973. Zbl 0258.35001
[7] Li, H. J., Yeh, C. C.: Surmian comparison theorem for half–linear second order differential equations. Proc. Roy. Soc. Edinburgh 125A (1995), 1193–1204. MR 1362999
[8] Mirzov, J. D.: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems. J. Math. Anal. Appl. 53 (1976), 418–425. DOI 10.1016/0022-247X(76)90120-7 | MR 0402184 | Zbl 0327.34027
[9] Wong, P. K.: A Sturmian theorem for first order partial differential equations. Trans. Amer. Math. Soc. 166 (1972), 126–131. MR 0294911 | Zbl 0238.35013
[10] Yoshida, N.: Oscillation Theory of Partial Differential Equations. World Scientific, Singapore, Hackensack, London, 2008. MR 2485076 | Zbl 1154.35001
Partner of
EuDML logo