Previous |  Up |  Next

Article

Title: Wirtinger inequality and nonlinear differential systems (English)
Author: Jaroš, Jaroslav
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 49
Issue: 1
Year: 2013
Pages: 35-41
Summary lang: English
.
Category: math
.
Summary: Picone identity for a class of nonlinear differential equations is established and various qualitative results (such as Wirtinger-type inequality and the existence of zeros of first components of solutions) are obtained with the help of this new formula. (English)
Keyword: nonlinear differential system
Keyword: Picone identity
Keyword: Wirtinger inequality
MSC: 34A05
MSC: 34C10
idZBL: Zbl 06321146
idMR: MR3073014
DOI: 10.5817/AM2013-1-35
.
Date available: 2013-05-28T13:28:42Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143298
.
Reference: [1] Elbert, Á.: A half-linear second order differential equation.Colloq. Math. János Bolyai 30 (1979), 153–180. MR 0680591
Reference: [2] Jaroš, J., Kusano, T.: On forced second order half–linear equations.Proceedings of the Symposium on the Structure and Methods of Functional Differential Equations, RIMS, Kokyuroku 984, Kyoto University, 1997, in Japanese, pp. 191–197.
Reference: [3] Jaroš, J., Kusano, T.: A Picone–type identity for second order half–linear differential equations.Acta Math. Univ. Comenian. (N.S.) 68 (1999), 137–151. Zbl 0926.34023, MR 1711081
Reference: [4] Kreith, K.: A Picone identity for first order systems.J. Math. Anal. Appl. 31 (1970), 297–308. MR 0261088, 10.1016/0022-247X(70)90024-7
Reference: [5] Kreith, K.: A class of comparison theorems for nonselfadjoint elliptic equations.Proc. Amer. Math. Soc. 29 (1971), 547–552. Zbl 0231.35021, MR 0279418
Reference: [6] Kreith, K.: Oscillation theory.Lecture Notes in Math., vol. 324, Springer, 1973. Zbl 0258.35001
Reference: [7] Li, H. J., Yeh, C. C.: Surmian comparison theorem for half–linear second order differential equations.Proc. Roy. Soc. Edinburgh 125A (1995), 1193–1204. MR 1362999
Reference: [8] Mirzov, J. D.: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems.J. Math. Anal. Appl. 53 (1976), 418–425. Zbl 0327.34027, MR 0402184, 10.1016/0022-247X(76)90120-7
Reference: [9] Wong, P. K.: A Sturmian theorem for first order partial differential equations.Trans. Amer. Math. Soc. 166 (1972), 126–131. Zbl 0238.35013, MR 0294911
Reference: [10] Yoshida, N.: Oscillation Theory of Partial Differential Equations.World Scientific, Singapore, Hackensack, London, 2008. Zbl 1154.35001, MR 2485076
.

Files

Files Size Format View
ArchMathRetro_049-2013-1_5.pdf 429.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo