Title:
|
Images of some functions and functional spaces under the Dunkl-Hermite semigroup (English) |
Author:
|
Ben Salem, Néjib |
Author:
|
Nefzi, Walid |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
54 |
Issue:
|
3 |
Year:
|
2013 |
Pages:
|
345-365 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We propose the study of some questions related to the Dunkl-Hermite semigroup. Essentially, we characterize the images of the Dunkl-Hermite-Sobolev space, $\mathcal{S}(\mathbb{R})$ and $L^p_\alpha(\mathbb{R})$, $1<p<\infty$, under the Dunkl-Hermite semigroup. Also, we consider the image of the space of tempered distributions and we give Paley-Wiener type theorems for the transforms given by the Dunkl-Hermite semigroup. (English) |
Keyword:
|
Dunkl-Hermite functions |
Keyword:
|
Dunkl-Hermite semigroup |
Keyword:
|
Dunkl-Hermite-Sobolev space |
MSC:
|
42B25 |
MSC:
|
46E35 |
MSC:
|
47B38 |
MSC:
|
47D03 |
. |
Date available:
|
2013-06-29T06:51:06Z |
Last updated:
|
2015-10-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143306 |
. |
Reference:
|
[1] Ben Salem N., Nefzi W.: Inversion of the Dunkl-Hermite semigroup.Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 2, 287–301. MR 2893456 |
Reference:
|
[2] Ben Salem N., Samaali T.: Hilbert transforms associated with Dunkl-Hermite polynomials.SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009), Paper 037. Zbl 1162.42002, MR 2506175 |
Reference:
|
[3] Dunkl C.F.: Integral kernels with reflection group invariance.Canad. J. Math. 43 (1991), 1213–1227. Zbl 0827.33010, MR 1145585, 10.4153/CJM-1991-069-8 |
Reference:
|
[4] Erdely A. et al.: Higher Transcendental Functions, vol 2.McGraw-Hill, New-York, 1953. |
Reference:
|
[5] de Jeu M.F.E.: The Dunkl transform.Invent. Math. 113 (1993), 147–162. Zbl 1116.33016, MR 1223227, 10.1007/BF01244305 |
Reference:
|
[6] Lebedev N.N.: Special Functions and their Applications.translated by R.A. Silverman, Dover, New York, 1972. Zbl 0271.33001, MR 0350075 |
Reference:
|
[7] Maalaoui R., Trimèche K.: A family of generalized windowed transforms associated with the Dunkl operators on $\mathbb{R}^d$.Integral Transforms Spec. Funct. 23 (2012), no. 3, 191–206. MR 2891463, 10.1080/10652469.2011.577427 |
Reference:
|
[8] Radha R., Thangavelu S.: Holomorphic Sobolev spaces, Hermite and special Hermite semigroups and a Paley-Wiener theorem for the windowed Fourier transform.J. Math. Anal. Appl. 354 (2009), 564–574. Zbl 1168.43005, MR 2515237, 10.1016/j.jmaa.2009.01.021 |
Reference:
|
[9] Radha R., Venku Naidu D.: Image of $L^p(\mathbb R^n)$ under the Hermite semigroup.. Int. J. Math. Math. Sci. (2008), Art. ID 287218, 13 pages. MR 2482046 |
Reference:
|
[10] Rosenblum M.: Generalized Hermite polynomials and the Bose-like oscillator calculus.in Operator theory: Advances and Applications, Vol. 73, Birkhäuser, Basel, 1994, pp. 369–396. MR 1320555 |
Reference:
|
[11] Rösler M.: Generalized Hermite polynomials and the heat equation for Dunkl operators.Comm. Math. Phys. 192 (1998), no. 3, 519–542. MR 1620515, 10.1007/s002200050307 |
Reference:
|
[12] Rösler M., Voit M.: Markov Processes related with Dunkl operators.Adv. Appl. Math. 21 (1998), 575–643. Zbl 0919.60072, MR 1652182, 10.1006/aama.1998.0609 |
Reference:
|
[13] Trimèche K.: Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators.Integral Transforms Spec. Funct. 13 (2002), 17–38. Zbl 1030.44004, MR 1914125, 10.1080/10652460212888 |
Reference:
|
[14] Trimèche K.: Hypoelliptic Dunkl convolution equations in the space of distributions on $\mathbb{R}^d$.J. Fourier Anal. Appl. 12 (2006), 517–542. MR 2267633, 10.1007/s00041-005-5073-y |
. |