Previous |  Up |  Next

Article

Title: On $\alpha$-embedded sets and extension of mappings (English)
Author: Karlova, Olena
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 3
Year: 2013
Pages: 377-396
Summary lang: English
.
Category: math
.
Summary: We introduce and study $\alpha$-embedded sets and apply them to generalize the Kuratowski Extension Theorem. (English)
Keyword: $\alpha $-embedded set
Keyword: $\alpha $-separated set
Keyword: extension
MSC: 54C20
MSC: 54C30
MSC: 54H05
.
Date available: 2013-06-29T06:54:48Z
Last updated: 2015-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/143308
.
Reference: [1] Blair R.: Filter characterization of $z$-, $C^*$-, and $C$-embeddings.Fund. Math. 90 (1976), 285–300. MR 0415564
Reference: [2] Blair R., Hager A.: Extensions of zero-sets and of real-valued functions.Math. Z. 136 (1974), 41–52. Zbl 0264.54011, MR 0385793, 10.1007/BF01189255
Reference: [3] Corson H.: Normality in subsets of product spaces.Amer. J. Math. 81 (1959), 785–796. Zbl 0095.37302, MR 0107222, 10.2307/2372929
Reference: [4] HASH(0x9f826e8): Encyclopedia of General Topology.edited by K.P. Hart, Jun-iti Nagata and J.E. Vaughan, Elsevier, 2004. MR 2049453
Reference: [5] Engelking R.: General Topology. Revised and completed edition.Heldermann Verlag, Berlin, 1989. MR 1039321
Reference: [6] Gillman L., Jerison M.: Rings of Continuous Functions.Van Nostrand, Princeton, 1960. Zbl 0327.46040, MR 0116199
Reference: [7] Kalenda O., Spurný J.: Extending Baire-one functions on topological spaces.Topology Appl. 149 (2005), 195–216. Zbl 1075.54011, MR 2130864, 10.1016/j.topol.2004.09.007
Reference: [8] Karlova O.: Baire classification of mappings which are continuous with respect to the first variable and of the $\alpha$'th functionally class with respect to the second variable.Mathematical Bulletin NTSH 2 (2005), 98–114 (in Ukrainian).
Reference: [9] Karlova O.: Classification of separately continuous functions with values in $\sigma$-metrizable spaces.Appl. Gen. Topol. 13 (2012), no. 2, 167–178. MR 2998364
Reference: [10] Kombarov A., Malykhin V.: On $\Sigma$-products.Dokl. Akad. Nauk SSSR 213 (1973), 774–776 (in Russian). MR 0339073
Reference: [11] Kuratowski K.: Topology, Vol. 1.Moscow, Mir, 1966 (in Russian). MR 0259836
Reference: [12] Lukeš J., Malý J., Zajíček L.: Fine Topology Methods in Real Analysis and Potential Theory.Springer, Berlin, 1986. Zbl 0607.31001, MR 0861411
Reference: [13] Ohta H.: Extension properties and the Niemytski plane.Appl. Gen. Topol. 1 (2000), no. 1, 45–60. MR 1796931
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-3_6.pdf 308.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo