Previous |  Up |  Next

Article

Title: Nearly optimal convergence result for multigrid with aggressive coarsening and polynomial smoothing (English)
Author: Vaněk, Petr
Author: Brezina, Marian
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 58
Issue: 4
Year: 2013
Pages: 369-388
Summary lang: English
.
Category: math
.
Summary: We analyze a general multigrid method with aggressive coarsening and polynomial smoothing. We use a special polynomial smoother that originates in the context of the smoothed aggregation method. Assuming the degree of the smoothing polynomial is, on each level $k$, at least $C h_{k+1}/h_k$, we prove a convergence result independent of $h_{k+1}/h_k$. The suggested smoother is cheaper than the overlapping Schwarz method that allows to prove the same result. Moreover, unlike in the case of the overlapping Schwarz method, analysis of our smoother is completely algebraic and independent of geometry of the problem and prolongators (the geometry of coarse spaces). (English)
Keyword: multigrid
Keyword: aggressive coarsening
Keyword: optimal convergence result
MSC: 65F10
MSC: 65M55
MSC: 65N30
MSC: 65N55
idZBL: Zbl 06221236
idMR: MR3083519
DOI: 10.1007/s10492-013-0018-2
.
Date available: 2013-07-18T15:13:53Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143335
.
Reference: [1] Bornemann, F. A., Deuflhard, P.: The cascadic multigrid method for elliptic problems.Numer. Math. 75 (1996), 135-152. Zbl 0873.65107, MR 1421984, 10.1007/s002110050234
Reference: [2] Bramble, J. H., Pasciak, J. E., Wang, J., Xu, J.: Convergence estimates for multigrid algorithms without regularity assumptions.Math. Comput. 57 (1991), 23-45. Zbl 0727.65101, MR 1079008, 10.1090/S0025-5718-1991-1079008-4
Reference: [3] Brezina, M., Heberton, C., Mandel, J., Vaněk, P.: An iterative method with convergence rate chosen a priori.Center for Computational Mathematics, University of Colorado at Denver (UCD/CCM) Report 140 (1999), http://ccm.ucdenver.edu/reports/rep140.pdf.
Reference: [4] Brezina, M., Vaněk, P., Vassilevski, P. S.: An improved convergence analysis of smoothed aggregation algebraic multigrid.Numer. Linear Algebra Appl. 19 (2012), 441-469. Zbl 1274.65315, MR 2911383, 10.1002/nla.775
Reference: [5] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications.North-Holland Amsterdam (1978). MR 0520174
Reference: [6] Křížková, J., Vaněk, P.: Two-level preconditioner with small coarse grid appropriate for unstructured meshes.Numer. Linear Algebra Appl. 3 (1996), 255-274. Zbl 0906.65114, MR 1399492, 10.1002/(SICI)1099-1506(199607/08)3:4<255::AID-NLA77>3.0.CO;2-2
Reference: [7] Vaněk, P.: Smoothed prolongation multigrid with rapid coarsening and massive smoothing.Appl. Math., Praha 57 (2012), 1-10. Zbl 1249.65272, MR 2891302, 10.1007/s10492-012-0001-3
Reference: [8] Vaněk, P., Brezina, M., Mandel, J.: Convergence of algebraic multigrid based on smoothed aggregation.Numer. Math. 88 (2001), 559-579. Zbl 0992.65139, MR 1835471, 10.1007/s211-001-8015-y
Reference: [9] Vaněk, P., Brezina, M., Tezaur, R.: Two-grid method for linear elasticity on unstructured meshes.SIAM J. Sci. Comput. 21 (1999), 900-923. MR 1755171, 10.1137/S1064827596297112
Reference: [10] Vassilevski, P. S.: Multilevel Block Factorization Preconditioners. Matrix-Based Analysis and Algorithms for Solving Finite Element Equations.Springer New York (2008). Zbl 1170.65001, MR 2427040
Reference: [11] Xu, J., Zikatanov, L.: The method of alternating projections and the method of subspace corrections in Hilbert space.J. Am. Math. Soc. 15 (2002), 573-597. Zbl 0999.47015, MR 1896233, 10.1090/S0894-0347-02-00398-3
.

Files

Files Size Format View
AplMat_58-2013-4_1.pdf 313.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo