Previous |  Up |  Next

Article

Title: Identification problems for degenerate parabolic equations (English)
Author: Awawdeh, Fadi
Author: Obiedat, Hamed M.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 58
Issue: 4
Year: 2013
Pages: 389-404
Summary lang: English
.
Category: math
.
Summary: This paper deals with multivalued identification problems for parabolic equations. The problem consists of recovering a source term from the knowledge of an additional observation of the solution by exploiting some accessible measurements. Semigroup approach and perturbation theory for linear operators are used to treat the solvability in the strong sense of the problem. As an important application we derive the corresponding existence, uniqueness, and continuous dependence results for different degenerate identification problems. Applications to identification problems for the Stokes system, Poisson-heat equation, and Maxwell system are given to illustrate the theory. (English)
Keyword: identification problem
Keyword: perturbation theory for linear operators
Keyword: degenerate differential equation
MSC: 34A55
MSC: 34G10
MSC: 34G25
MSC: 34G99
MSC: 35K65
MSC: 35R30
MSC: 47A55
idZBL: Zbl 06221237
idMR: MR3083520
DOI: 10.1007/s10492-013-0019-1
.
Date available: 2013-07-18T15:15:37Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143337
.
Reference: [1] Horani, M. Al: Projection method for solving degenerate first-order identification problem.J. Math. Anal. Appl. 364 (2010), 204-208. Zbl 1193.34021, MR 2576064, 10.1016/j.jmaa.2009.10.033
Reference: [2] Horani, M. Al, Favini, A.: An identification problem for first-order degenerate differential equations.J. Optim. Theory Appl. 130 (2006), 41-60. Zbl 1129.65044, MR 2275353, 10.1007/s10957-006-9083-y
Reference: [3] Horani, M. Al, Favini, A., Lorenzi, A.: Second-order degenerate identification differential problems.J. Optim. Theory Appl. 141 (2009), 13-36. Zbl 1165.49013, MR 2495916, 10.1007/s10957-008-9497-9
Reference: [4] Awawdeh, F., Obiedat, H. M.: Source identification problem for degenerate differential equations.Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 73 (2011), 61-72. Zbl 1249.35341, MR 2871880
Reference: [5] Awawdeh, F.: Perturbation method for abstract second-order inverse problems.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 1379-1386. Zbl 1186.34020, MR 2577538, 10.1016/j.na.2009.08.021
Reference: [6] Awawdeh, F.: Ordinary Differential Equations in Banach Spaces with Applications, PhD thesis.Jordan University (2006). Zbl 1062.22046
Reference: [7] Cannarsa, P., Martinez, P., Vancostenoble, J.: Carleman estimates for a class of degenerate parabolic operators.SIAM J. Control Optim. 47 (2008), 1-19. Zbl 1168.35025, MR 2373460, 10.1137/04062062X
Reference: [8] Cannarsa, P., Tort, J., Yamamoto, M.: Determination of source terms in a degenerate parabolic equation.Inverse Probl. 26 (2010), Article ID 105003, pp. 20. Zbl 1200.35319, MR 2679467
Reference: [9] Desh, W., Schappacher, W.: On relatively bounded perturbations of linear $C_0$-semigroups.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 11 (1984), 327-341. MR 0764949
Reference: [10] DuChateau, P., Thelwell, R., Butters, G.: Analysis of an adjoint problem approach to the identification of an unknown diffusion coefficient.Inverse Probl. 20 (2004), 601-625. Zbl 1054.35125, MR 2065443
Reference: [11] Favini, A., Yagi, A.: Degenerate Differential Equations in Banach Spaces.Pure and Applied Mathematics, Marcel Dekker New York (1999). Zbl 0913.34001, MR 1654663
Reference: [12] Imanuvilov, O. Y., Yamamoto, M.: Lipschitz stability in inverse parabolic problems by the Carleman estimate.Inverse Probl. 14 (1998), 1229-1245. Zbl 0992.35110, MR 1654631
Reference: [13] Klibanov, M. V., Timonov, A. A.: Carleman Estimates for Coefficient Inverse Problems and Numerical Applications.Inverse and Ill-Posed Problems Series VSP, Utrecht (2004). Zbl 1069.65106, MR 2126149
Reference: [14] Ling, L., Yamamoto, M., Hon, Y. C., Takeuchi, T.: Identification of source locations in two-dimensional heat equations.Inverse Probl. 22 (2006), 1289-1305. Zbl 1112.35147, MR 2249466
Reference: [15] Lorenzi, A., Paparoni, E.: Direct and inverse problems in the theory of materials with memory.Rend. Semin. Mat. Univ. Padova 87 (1992), 105-138. Zbl 0757.73018, MR 1183905
Reference: [16] Lorenzi, A.: An Introduction to Identification Problems, Via Functional Analysis.VSP Utrecht (2001).
Reference: [17] Lorenzi, A.: An inverse problem for a semilinear parabolic equation.Ann. Mat. Pura Appl., IV. Ser. 131 (1982), 145-166. Zbl 0493.35078, MR 0681561, 10.1007/BF01765150
Reference: [18] Lorenzi, A., Vrabie, I. I.: Identification for a semilinear evolution equation in a Banach space.Inverse Probl. 26 (2010), Article ID 085009, pp. 16. Zbl 1205.34072, MR 2658826
Reference: [19] Orlovskii, D. G.: An inverse problem for a second-order differential equation in a Banach space.Differ. Uravn. 25 (1989), 1000-1009 Russian; Differ. Equations 25 (1989), 730-738 English. MR 1008642
Reference: [20] Orlovskij, D. G.: Weak and strong solutions of inverse problems for differential equations in a Banach space.Differ. Uravn. 27 (1991), 867-874 Russian; Differ. Equations 27 (1991), 611-617 English. MR 1117116
Reference: [21] Pavlov, G. A.: Uniqueness of a solution of an abstract inverse problem.Differ. Uravn. 24 (1988), 1402-1406 Russian; Differ. Equations 24 917-920 English. Zbl 0672.31009, MR 0964736
Reference: [22] Pilant, M., Rundell, W.: An inverse problem for a nonlinear elliptic differential equation.SIAM J. Math. Anal. 18 (1987), 1801-1809. Zbl 0647.35081, MR 0911664, 10.1137/0518127
Reference: [23] Prilepko, A. I., Orlovskij, D. G., Vasin, I. A.: Methods for Solving Inverse Problems in Mathematical Physics, Pure and Applied Mathematics.Marcel Dekker New York (2000). MR 1748236
.

Files

Files Size Format View
AplMat_58-2013-4_2.pdf 279.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo