Previous |  Up |  Next

Article

Title: Tilt stability in nonlinear programming under Mangasarian-Fromovitz constraint qualification (English)
Author: Mordukhovich, Boris S.
Author: Outrata, Jiří V.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 49
Issue: 3
Year: 2013
Pages: 446-464
Summary lang: English
.
Category: math
.
Summary: The paper concerns the study of tilt stability of local minimizers in standard problems of nonlinear programming. This notion plays an important role in both theoretical and numerical aspects of optimization and has drawn a lot of attention in optimization theory and its applications, especially in recent years. Under the classical Mangasarian-Fromovitz Constraint Qualification, we establish relationships between tilt stability and some other stability notions in constrained optimization. Involving further the well-known Constant Rank Constraint Qualification, we derive new necessary and sufficient conditions for tilt-stable local minimizers. (English)
Keyword: variational analysis
Keyword: second-order theory
Keyword: generalized differentiation
Keyword: tilt stability
MSC: 49J52
MSC: 90C30
MSC: 90C31
.
Date available: 2013-07-18T15:38:30Z
Last updated: 2013-07-31
Stable URL: http://hdl.handle.net/10338.dmlcz/143358
.
Reference: [1] Artacho, F. J. A. Aragón, Goeffroy, M. H.: Characterization of metric regularity of subdifferentials..J. Convex Anal. 15 (2008), 365-380. MR 2422996
Reference: [2] Bonnans, F. J., Shapiro, A.: Perturbation Analysis of Optimization Problems..Springer, New York 2000. Zbl 0966.49001, MR 1756264
Reference: [3] Dontchev, A. L., Rockafellar, R. T.: Characterizations of strong regularity for variational inequalities over polyhedral convex sets..SIAM J. Optim. 6 (1996), 1087-1105. Zbl 0899.49004, MR 1416530, 10.1137/S1052623495284029
Reference: [4] Dontchev, A. L., Rockafellar, R. T.: Characterizations of Lipschitzian stability in nonlinear programming..In: Mathematical Programming with Data Perturbations (A. V. Fiacco, ed.), Marcel Dekker, New York 1997, pp. 65-82. Zbl 0891.90146, MR 1472266
Reference: [5] Dontchev, A. L., Rockafellar, R. T.: Implicit Functions and Solution Mappings. A View from Variational Analysis..Springer, Dordrecht 2009. Zbl 1178.26001, MR 2515104
Reference: [6] Drusvyatskiy, D., Lewis, A. S.: Tilt stability, uniform quadratic growth, and strong metric regularity of the subdifferential..SIAM J. Optim. 23 (2013), 256-267. MR 3033107, 10.1137/120876551
Reference: [7] Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems..Springer, New York 2003. Zbl 1062.90002
Reference: [8] Henrion, R., Mordukhovich, B. S., Nam, N. M.: Second-order analysis of polyhedral systems in finite and infinite dimensions with applications to robust stability of variational inequalities..SIAM J. Optim. 20 (2010), 2199-2227. Zbl 1208.49010, MR 2650845, 10.1137/090766413
Reference: [9] Henrion, R., Outrata, J. V., Surowiec, T.: On the coderivative of normal cone mappings to inequality systems..Nonlinear Anal. 71 (2009), 1213-1226. MR 2527541, 10.1016/j.na.2008.11.089
Reference: [10] Henrion, R., Outrata, J. V., Surowiec, T.: On regular coderivatives in parametric equalibria with non-unique multipliers..Math. Programming Ser. B 136 (2012), 111-131. MR 3000584, 10.1007/s10107-012-0553-8
Reference: [11] Henrion, R., Kruger, A. Y., Outrata, J. V.: Some remarks on stability of generalized equations..J. Optim. Theory Appl., DOI 10.1007 s 10957-012-0147-x.
Reference: [12] Izmailov, A. F., Kurennoy, A. S., Solodov, M. V.: A note on upper Lipschitz stability, error bounds, and critical multipliers for Lipschitz continuous KKT systems..Math. Programming, DOI 10.1007/s 10107-012-0586-z.
Reference: [13] Janin, R.: Directional derivative of marginal function in nonlinear programming..Math. Programming Stud. 21 (1984), 110-126. MR 0751246, 10.1007/BFb0121214
Reference: [14] Klatte, D.: On the stability of local and global solutions in parametric problems of nonlinear programming. Part I: Basic results..Seminarbericht 75 der Sektion Mathematik der Humboldt-Universitat zu Berlin 1985, pp. 1-21, MR 0861527
Reference: [15] Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization. Regularity, Calculus, Methods and Applications..Kluwer, Boston 2002. Zbl 1173.49300, MR 1909427
Reference: [16] Kojima, M.: Strongly stable stationary solutions in nonlinear programs..In: Analysis and Computation of Fixed Points (S. M. Robinson, ed.), Academic Press, New York 1980, pp. 93-138. Zbl 0478.90062, MR 0592631
Reference: [17] Levy, A. B., Poliquin, R. A., Rockafellar, R. T.: Stability of local optimal solutions..SIAM J. Optim. 10 (2000), 580-604. MR 1740960, 10.1137/S1052623498348274
Reference: [18] Lewis, A. S., Zhang, S.: Partial smoothness, tilt stability, and generalized Hessians..SIAM J. Optim. 23 (2013), 74-94. MR 3033099, 10.1137/110852103
Reference: [19] Lu, S.: Implications of the constant rank constraint qualification..Math. Programming 126 (2011), 365-392. Zbl 1214.90113, MR 2764353, 10.1007/s10107-009-0288-3
Reference: [20] Minchenko, L., Stakhovski, S.: Parametric nonlinear programming problems under the relaxed constant rank condition..SIAM J. Optim. 21 (2011), 314-332. Zbl 1229.90216, MR 2783218, 10.1137/090761318
Reference: [21] Mordukhovich, B. S.: Sensitivity analysis in nonsmooth optimization..In: Theoretical Aspects of Industrial Design (D. A. Field and V. Komkov, eds.), SIAM Proc. Appl. Math. 58 (1992), pp. 32-46. Philadelphia. Zbl 0769.90075, MR 1157413
Reference: [22] Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation. I: Basic Theory, II: Applications..Springer, Berlin 2006. Zbl 1100.49002, MR 2191744
Reference: [23] Mordukhovich, B. S., Outrata, J. V.: Second-order subdifferentials and their applications..SIAM J. Optim. 12 (2001), 139-169. Zbl 1011.49016, MR 1870589, 10.1137/S1052623400377153
Reference: [24] Mordukhovich, B. S., Outrata, J. V.: Coderivative analysis of quasi-variational inequalities with applications to stability and optimization..SIAM J. Optim. 18 (2007), 389-412. Zbl 1145.49012, MR 2338444, 10.1137/060665609
Reference: [25] Mordukhovich, B. S., Rockafellar, R. T.: Second-order subdifferential calculus with applications to tilt stability in optimization..SIAM J. Optim. 22 (2012), 953-986. Zbl 1260.49022, MR 3023759, 10.1137/110852528
Reference: [26] Outrata, J. V.: Optimality conditions for a class of mathematical programs with equilibrium constraints..Math. Oper. Res. 24 (1999), 627-644. Zbl 1039.90088, MR 1854246, 10.1287/moor.24.3.627
Reference: [27] Outrata, J. M., C., H. Ramírez: On the Aubin property of critical points to perturbed second-order cone programs..SIAM J. Optim. 21 (2011), 798-823. Zbl 1247.90256, MR 2837552, 10.1137/100807168
Reference: [28] Poliquin, R. A., Rockafellar, R. T.: Tilt stability of a local minimum..SIAM J. Optim. 8 (1998), 287-299. Zbl 0918.49016, MR 1618790, 10.1137/S1052623496309296
Reference: [29] Ralph, D., Dempe, S.: Directional derivatives of the solution of a parametric nonlinear program..Math. Programming 70 (1995), 159-172. Zbl 0844.90089, MR 1361325, 10.1007/BF01585934
Reference: [30] Robinson, S. M.: Generalized equations and their solutions, I: Basic theory..Math. Programming Stud. 10 (1979), 128-141. Zbl 0404.90093, MR 0527064, 10.1007/BFb0120850
Reference: [31] Robinson, S. M.: Strongly regular generalized equations..Math. Oper. Res. 5 (1980), 43-62. Zbl 0437.90094, MR 0561153, 10.1287/moor.5.1.43
Reference: [32] Robinson, S. M.: Local epi-continuity and local optimization..Math. Programming 37 (1987), 208-223. Zbl 0623.90078, MR 0883021, 10.1007/BF02591695
Reference: [33] Rockafellar, R. T., Wets, R. J.-B.: Variational Analysis..Springer, Berlin 1998. Zbl 0888.49001, MR 1491362
.

Files

Files Size Format View
Kybernetika_49-2013-3_6.pdf 435.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo