Previous |  Up |  Next

Article

Title: Recursive form of general limited memory variable metric methods (English)
Author: Lukšan, Ladislav
Author: Vlček, Jan
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 49
Issue: 2
Year: 2013
Pages: 224-235
Summary lang: English
.
Category: math
.
Summary: In this report we propose a new recursive matrix formulation of limited memory variable metric methods. This approach can be used for an arbitrary update from the Broyden class (and some other updates) and also for the approximation of both the Hessian matrix and its inverse. The new recursive formulation requires approximately $4 m n$ multiplications and additions per iteration, so it is comparable with other efficient limited memory variable metric methods. Numerical experiments concerning Algorithm 1, proposed in this report, confirm its practical efficiency. (English)
Keyword: unconstrained optimization
Keyword: large scale optimization
Keyword: limited memory methods
Keyword: variable metric updates
Keyword: recursive matrix formulation
Keyword: algorithms
MSC: 49K35
MSC: 49M30
MSC: 90C06
MSC: 90C26
MSC: 90C47
MSC: 90C51
MSC: 90C53
idZBL: Zbl 1266.49060
idMR: MR3085394
.
Date available: 2013-07-22T08:44:51Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143365
.
Reference: [1] Bongartz, I., Conn, A. R., Gould, N., Toint, P. L.: CUTE: constrained and unconstrained testing environment..ACM Trans. Math. Software 21 (1995), 123-160. Zbl 0886.65058, 10.1145/200979.201043
Reference: [2] Byrd, R. H., Nocedal, J., Schnabel, R. B.: Representation of quasi-Newton matrices and their use in limited memory methods..Math. Programming 63 (1994), 129-156. MR 1268604, 10.1007/BF01582063
Reference: [3] Davidon, W. C.: Optimally conditioned optimization algorithms without line searches..Math. Programming 9 (1975), 1-30. Zbl 0328.90055, MR 0383741, 10.1007/BF01681328
Reference: [4] Dolan, E. D., Moré, J. J.: Benchmarking optimization software with performance profiles..Math. Programming 91 (2002), 201-213. Zbl 1049.90004, MR 1875515, 10.1007/s101070100263
Reference: [5] Hoshino, S.: A formulation of variable metric methods..J. Institute of Mathematics and its Applications 10 (1972), 394-403. Zbl 0258.65065, MR 0336997, 10.1093/imamat/10.3.394
Reference: [6] Lukšan, L.: Quasi-Newton methods without projections for unconstrained minimization..Kybernetika 18 (1982), 290-306. Zbl 0514.65047, MR 0688368
Reference: [7] Lukšan, L., Matonoha, C., Vlček, J.: Sparse Test Problems for Unconstrained Optimization..Report V-1064, Institute of Computer Science AS CR, Prague 2010.
Reference: [8] Lukšan, L., Matonoha, C., Vlček, J.: Modified CUTE Problems for Sparse Unconstrained Optimization..Report V-1081, Institute of Computer Science AS CR, Prague 2010.
Reference: [9] Spedicato, L. Lukšan amd E.: Variable metric methods for unconstrained optimization and nonlinear least squares..J. Comput. Appl. Math. 124 (2000), 61-95. MR 1803294, 10.1016/S0377-0427(00)00420-9
Reference: [10] Matthies, H., Strang, G.: The solution of nonlinear finite element equations..Internat. J. Numer. Methods Engrg. 14 (1979), 1613-1623. Zbl 0419.65070, MR 0551801, 10.1002/nme.1620141104
Reference: [11] Nocedal, J.: Updating quasi-Newton matrices with limited storage..Math. Comput. 35 (1980), 773-782. Zbl 0464.65037, MR 0572855, 10.1090/S0025-5718-1980-0572855-7
Reference: [12] Vlček, J., Lukšan, L.: Generalizations of the Limited-memory BFGS Method Based on Quasi-product Form of Update..Report V-1060, Institute of Computer Science AS CR, Prague 2009.
.

Files

Files Size Format View
Kybernetika_49-2013-2_3.pdf 300.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo