Previous |  Up |  Next

Article

Title: A new regular multiplier embedding (English)
Author: Bouza Allende, Gemayqzel
Author: Guddat, Jürgen
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 49
Issue: 2
Year: 2013
Pages: 236-257
Summary lang: English
.
Category: math
.
Summary: Embedding approaches can be used for solving non linear programs P. The idea is to define a one-parametric problem such that for some value of the parameter the corresponding problem is equivalent to P. A particular case is the multipliers embedding, where the solutions of the corresponding parametric problem can be interpreted as the points computed by the multipliers method on P. However, in the known cases, either path-following methods can not be applied or the necessary conditions for its convergence are fulfilled under very restrictive hypothesis. In this paper, we present a new multipliers embedding such that the objective function and the constraints of $P(t)$ are $C^3$ differentiable functions. We prove that the parametric problem satisfies the JJT-regularity generically, a necessary condition for the success of the path-following method. (English)
Keyword: Jongen–Jonker–Twilt regularity
Keyword: multipliers method
Keyword: embedding
MSC: 49M30
MSC: 90C31
idZBL: Zbl 1266.90178
idMR: MR3085395
.
Date available: 2013-07-22T08:46:25Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143366
.
Reference: [1] Afonso, M., Bioucas-Dias, J., Figueiredo, M.: Fast image recovery using variable splitting and constrained optimization..IEEE Trans. Signal Process. 19 (2010), 2345-2356. MR 2798930
Reference: [2] Andreani, R., Birgin, E. G., Martínez, J. M., Schuverdt, M. L.: On augmented Lagrangian methods with general lower-level constraints..SIAM J. Optim. 28 (2008), 1286-1309. Zbl 1151.49027, MR 2373302, 10.1137/060654797
Reference: [3] Avelino, C, Vicente, L. N.: Updating the multipliers associated with inequality constraints in an augmented Lagrangian multiplier method..J. Optim. Theory Appl. 199 (2003), 215-233. Zbl 1094.90045, MR 2028992, 10.1023/B:JOTA.0000005444.50285.4d
Reference: [4] Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: Non Linear Programming Theory and Algorithms..John Willey and Sons, 1993. MR 2218478
Reference: [5] Bertsekas, D. P.: Constrained Optimization and Lagrange Multiplier Methods..Academic Press, New York 1982. Zbl 0662.90044, MR 0690767
Reference: [6] Birgin, E. G., Martínez, J. M.: Augmented lagrangian method with nonmonotone penalty parameters for constrained..Optimization Online, http://www.optimization-online.org/DB_FILE/2010/06/2662.pdf 2010. Zbl 1244.90216
Reference: [7] Bouza, G.: A new embedding for the augmented Lagrangean method..Investigación Oper. 22 (2001), 145-153. MR 1868635
Reference: [8] Bouza, G., Guddat, J.: A note on embeddings for the augmented Lagrange method..Yugosl. J. Oper. Res. 20 (2010), 183-196. MR 2771069, 10.2298/YJOR1002183B
Reference: [9] Dentcheva, D., Gollmer, R., Guddat, J., Rückmann, J.: Pathfollowing methods in non linear optimization, multipliers embedding..ZOR 41 (1995), 127-152. MR 1336625
Reference: [10] Dostal, Z., Friedlander, A., Santos, A.: Augmented Lagrangians with adaptative precision control for quadratic programming problems with equality constrains..Comput. Optim. Appl. 14 (1999), 37-53. MR 1704945, 10.1023/A:1008700911674
Reference: [11] Gollmer, R., Kausmann, U., Nowack, D., Wendler, K., Estrada, J. Bacallao: Computerprogramm PAFO..Humboldt-Universitaet, Institut fuer Mathematik 2004.
Reference: [12] Gómez, W.: On generic quadratic penalty embeddings for non linear optimization problems..Optimization 50 (2001), 279-295. MR 1890006, 10.1080/02331930108844564
Reference: [13] Gómez, W., Guddat, J., Jongen, H. Th., Rückmann, J. J., Solano, C.: Curvas criticas y saltos en la optimizacion no lineal..http://www.emis.de/monographs/curvas/index.html 2000.
Reference: [14] Guddat, J., Guerra, F., Jongen, H. Th.: Parametric Optimization: Singularities, Pathfollowing and Jumps..Teubner and John Wiley, Chichester 1990. MR 1085483
Reference: [15] Hirsch, M.: Differential Topology..Springer Verlag, New York 1976. Zbl 0804.57001, MR 0448362
Reference: [16] Iusem, A. N.: Augmented Lagrangean methods and proximal point methods for convex optimization..Investigación Oper. 8 (1999), 11-49.
Reference: [17] Jongen, H. Th., Jonker, P., Twilt, F.: Critical sets in parametric optimization..Math. Programming 34 (1986), 333-353. Zbl 0599.90114, MR 0839608, 10.1007/BF01582234
Reference: [18] Jongen, H. Th., Jonker, P., Twilt, F.: On one-parametrer families of optimization problems: Equality constrains..J. Optim. Theory Appl. 48 (1986), 141-161. MR 0825389
Reference: [19] Li, D., Sun, X. L.: Local convexification of the Lagrangian function in non-convex poptimization..J. Optim. Theory Appl. 104 (2000), 109-120. MR 1741392, 10.1023/A:1004628822745
Reference: [20] Li, Z., Ierapetritou, M. G.: Production planning and scheduling integration through augmented lagrangian optimization..Comput. and Chemical Engrg. 34 (2010), 996-1006. 10.1016/j.compchemeng.2009.11.016
Reference: [21] Luenberger, D. G., Ye, Yinyu: Linear and Nonlinear Programming. Third edition..Internat. Ser. Oper. Res. Management Sci. Springer, New York 2008. MR 2423726
Reference: [22] Schmidt, R.: Eine modifizierte standard Einbettung zur Behandlung von Gleichungs und Ungleichungs Restriktionen..Master's Thesis, Humboldt Universitaet zu Berlin 2000.
.

Files

Files Size Format View
Kybernetika_49-2013-2_4.pdf 476.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo