Previous |  Up |  Next

Article

Title: Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Functional Delay on a Time Scale (English)
Author: Ardjouni, Abdelouaheb
Author: Djoudi, Ahcène
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 52
Issue: 1
Year: 2013
Pages: 5-19
Summary lang: English
.
Category: math
.
Summary: Let $\mathbb {T}$ be a periodic time scale. The purpose of this paper is to use a modification of Krasnoselskii’s fixed point theorem due to Burton to prove the existence of periodic solutions on time scale of the nonlinear dynamic equation with variable delay $x^{\triangle }\left( t\right) =-a\left( t\right) h\left( x^{\sigma }\left( t\right) \right) +c(t)x^{\widetilde{\triangle }}\left( t-r\left( t\right) \right) +G\left( t,x\left( t\right) ,x\left( t-r\left( t\right) \right) \right)$, $t\in \mathbb {T}$, where $f^{\triangle }$ is the $\triangle $-derivative on $\mathbb {T}$ and $f^{\widetilde{\triangle }}$ is the $\triangle $-derivative on $(id-r)(\mathbb {T})$. We invert the given equation to obtain an equivalent integral equation from which we define a fixed point mapping written as a sum of a large contraction and a compact map. We show that such maps fit very nicely into the framework of Krasnoselskii–Burton’s fixed point theorem so that the existence of periodic solutions is concluded. The results obtained here extend the work of Yankson [Yankson, E.: Existence of periodic solutions for totally nonlinear neutral differential equations with functional delay Opuscula Mathematica 32, 3 (2012), 617–627.]. (English)
Keyword: fixed point
Keyword: large contraction
Keyword: periodic solutions
Keyword: time scales
Keyword: nonlinear neutral dynamic equations
MSC: 06E30
MSC: 34K13
MSC: 34K30
MSC: 34L30
idZBL: Zbl 1290.34109
idMR: MR3202745
.
Date available: 2013-08-02T07:49:54Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143385
.
Reference: [1] Adıvar, M., Raffoul, Y. N.: Existence of periodic solutions in totally nonlinear delay dynamic equations. Electronic Journal of Qualitative Theory of Differential Equations 2009, 1 (2009), 1–20. Zbl 1195.34138, MR 2558826
Reference: [2] Ardjouni, A., Djoudi, A.: Existence of periodic solutions for nonlinear neutral dynamic equations with variable delay on a time scale. Commun Nonlinear Sci Numer Simulat 17 (2012), 3061–3069. Zbl 1254.34128, MR 2880475, 10.1016/j.cnsns.2011.11.026
Reference: [3] Ardjouni, A., Djoudi, A.: Periodic solutions in totally nonlinear dynamic equations with functional delay on a time scale. Rend. Sem. Mat. Univ. Politec. Torino 68, 4 (2010), 349–359. Zbl 1226.34062, MR 2815207
Reference: [4] Atici, F. M., Guseinov, G. Sh., Kaymakcalan, B.: Stability criteria for dynamic equations on time scales with periodic coefficients. In: Proceedings of the International Confernce on Dynamic Systems and Applications 3, 3 (1999), 43–48. MR 1864659
Reference: [5] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales, An Introduction with Applications. Birkhäuser, Boston, 2001. Zbl 0978.39001, MR 1843232
Reference: [6] Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston, 2003. Zbl 1025.34001, MR 1962542
Reference: [7] Burton, T. A.: Liapunov functionals, fixed points and stability by Krasnoselskii’s theorem. Nonlinear Stud. 9, 2 (2002), 181–190. Zbl 1084.47522, MR 1898587
Reference: [8] Burton, T. A.: Stability by Fixed Point Theory for Functional Differential Equations. Dover, New York, 2006. Zbl 1160.34001, MR 2281958
Reference: [9] Deham, H., Djoudi, A.: Periodic solutions for nonlinear differential equation with functional delay. Georgian Mathematical Journal 15, 4 (2008), 635–642. Zbl 1171.47061, MR 2494962
Reference: [10] Deham, H., Djoudi, A.: Existence of periodic solutions for neutral nonlinear differential equations with variable delay. Electronic Journal of Differential Equations 127, (2010), 1–8. Zbl 1203.34110, MR 2685037
Reference: [11] Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph. D. thesis, Universität Würzburg, Würzburg, 1988. Zbl 0695.34001
Reference: [12] Kaufmann, E. R., Raffoul, Y. N.: Periodic solutions for a neutral nonlinear dynamical equation on a time scale. J. Math. Anal. Appl. 319 32, 1 (2006), 315–325. Zbl 1096.34057, MR 2217863, 10.1016/j.jmaa.2006.01.063
Reference: [13] Kaufmann, E. R., Raffoul, Y. N.: Periodicity and stability in neutral nonlinear dynamic equation with functional delay on a time scale. Electronic Journal of Differential Equations 27 (2007), 1–12. MR 2299581
Reference: [14] Smart, D. R.: Fixed point theorems. Cambridge Tracts in Mathematics 66, Cambridge University Press, London–New York, 1974. Zbl 0297.47042, MR 0467717
Reference: [15] Yankson, E.: Existence of periodic solutions for totally nonlinear neutral differential equations with functional delay. Opuscula Mathematica 32, 3 (2012), 617–627. Zbl 1248.34105, MR 2945798, 10.7494/OpMath.2012.32.3.617
.

Files

Files Size Format View
ActaOlom_52-2013-1_1.pdf 268.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo