Title:
|
The Rings Which Can Be Recovered by Means of the Difference (English) |
Author:
|
Chajda, Ivan |
Author:
|
Švrček, Filip |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
52 |
Issue:
|
1 |
Year:
|
2013 |
Pages:
|
49-55 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
It is well known that to every Boolean ring $\mathcal {R}$ can be assigned a Boolean algebra $\mathcal {B}$ whose operations are term operations of $\mathcal {R}$. Then a symmetric difference of $\mathcal {B}$ together with the meet operation recover the original ring operations of $\mathcal {R}$. The aim of this paper is to show for what a ring $\mathcal {R}$ a similar construction is possible. Of course, we do not construct a Boolean algebra but only so-called lattice-like structure which was introduced and treated by the authors in a previous paper. In particular, we reached interesting results if the characteristic of the ring $\mathcal {R}$ is either an odd natural number or a power of 2. (English) |
Keyword:
|
Boolean ring |
Keyword:
|
commutative ring |
Keyword:
|
lattice-like structure |
Keyword:
|
difference |
MSC:
|
06E20 |
MSC:
|
06E30 |
MSC:
|
13A99 |
MSC:
|
13B25 |
idZBL:
|
Zbl 06285753 |
idMR:
|
MR3202748 |
. |
Date available:
|
2013-08-02T07:54:35Z |
Last updated:
|
2014-07-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143390 |
. |
Reference:
|
[1] Birkhoff, G.: Lattice Theory. 3rd edition, AMS Colloq. Publ. 25, Providence, RI, 1979. Zbl 0505.06001, MR 0598630 |
Reference:
|
[2] Chajda, I.: Pseudosemirings induced by ortholattices. Czech. Math. J. 46 (2008), 405–411. MR 1408295 |
Reference:
|
[3] Chajda, I., Eigenthaler, G.: A note on orthopseudorings and Boolean quasirings. Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 83–94. Zbl 1040.06003, MR 1749914 |
Reference:
|
[4] Chajda, I., Länger, H.: Ring-like operations in pseudocomplemented semilattices. Discuss. Math., Gen. Algebra Appl. 20 (2010), 87–95. MR 1782088, 10.7151/dmgaa.1008 |
Reference:
|
[5] Chajda, I., Švrček, F.: Lattice-like structures derived from rings. In: Proc. of Salzburg Conference (AAA81), Contributions to General Algebra 20, J. Heyn, Klagenfurt, 2011. MR 2908430 |
Reference:
|
[6] Dorninger, D., Länger, H., Ma̧cyński, M.: The logic induced by a system of homomorphisms and its various algebraic characterizations. Demonstratio Math. 30 (1997), 215–232. MR 1446613 |
Reference:
|
[7] Dorninger, D., Länger, H., Ma̧cyński, M.: On ring-like structures occuring in axiomatic quantum mechanics. Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 206 (1997), 279–289. MR 1632939 |
Reference:
|
[8] Dorninger, D., Länger, H., Ma̧cyński, M.: On ring-like structures induced by Mackey’s probability function. Rep. Math. Phys. 43 (1999), 499–515. MR 1713402, 10.1016/S0034-4877(00)86390-9 |
Reference:
|
[9] Dorninger, D., Länger, H., Ma̧cyński, M.: Lattice properties of ring-like quantum logics. Intern. J. Theor. Phys. 39 (2000), 1015–1026. MR 1779170, 10.1023/A:1003646323230 |
Reference:
|
[10] Dorninger, D., Länger, H., Ma̧cyński, M.: Concepts of measures on ring-like quantum logics. Rep. Math. Phys. 47 (2001), 167–176. MR 1836328, 10.1016/S0034-4877(01)89034-0 |
Reference:
|
[11] Dorninger, D., Länger, H., Ma̧cyński, M.: Ring-like structures with unique symmetric difference related to quantum logic. Discuss. Math., Gen. Algebra Appl. 21 (2001), 239–253. MR 1894319, 10.7151/dmgaa.1041 |
Reference:
|
[12] Länger, H.: Generalizations of the corresspondence between Boolean algebras and Boolean rings to orthomodular lattices. Tatra Mt. Math. Publ. 15 (1998), 97–105. MR 1655082 |
. |