Previous |  Up |  Next

Article

Title: Some mean convergence and complete convergence theorems for sequences of $m$-linearly negative quadrant dependent random variables (English)
Author: Wu, Yongfeng
Author: Rosalsky, Andrew
Author: Volodin, Andrei
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 58
Issue: 5
Year: 2013
Pages: 511-529
Summary lang: English
.
Category: math
.
Summary: The structure of linearly negative quadrant dependent random variables is extended by introducing the structure of $m$-linearly negative quadrant dependent random variables ($m=1,2,\dots $). For a sequence of $m$-linearly negative quadrant dependent random variables $\{X_n, n\ge 1\}$ and $1<p<2$ (resp. $1\le p <2$), conditions are provided under which $n^{-1/p} \sum _{k=1}^{n} (X_k - EX_k) \to 0$ in $L^1$ (resp. in $L^p$). Moreover, for $1\le p < 2$, conditions are provided under which $n^{-1/p} \sum _{k=1}^{n} (X_k - EX_k)$ converges completely to $0$. The current work extends some results of Pyke and Root (1968) and it extends and improves some results of Wu, Wang, and Wu (2006). An open problem is posed. (English)
Keyword: $m$-linearly negative quadrant dependence
Keyword: mean convergence
Keyword: complete convergence
MSC: 60F15
MSC: 60F25
idZBL: Zbl 06282094
idMR: MR3104616
DOI: 10.1007/s10492-013-0030-6
.
Date available: 2013-09-14T11:40:52Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143430
.
Reference: [1] Chandra, T. K.: Uniform integrability in the Cesàro sense and the weak law of large numbers.Sankhyā, Ser. A 51 (1989), 309-317. Zbl 0721.60024, MR 1175608
Reference: [2] Fuk, D. H., Nagaev, S. V.: Probability inequalities for sums of independent random variables.Theory Probab. Appl. 16 (1971), 643-660. Zbl 0259.60024, MR 0293695
Reference: [3] Hsu, P. L., Robbins, H.: Complete convergence and the law of large numbers.Proc. Natl. Acad. Sci. USA 33 (1947), 25-31. Zbl 0030.20101, MR 0019852, 10.1073/pnas.33.2.25
Reference: [4] Joag-Dev, K., Proschan, F.: Negative association of random variables, with applications.Ann. Stat. 11 (1983), 286-295. Zbl 0508.62041, MR 0684886, 10.1214/aos/1176346079
Reference: [5] Ko, M.-H., Choi, Y.-K., Choi, Y.-S.: Exponential probability inequality for linearly negative quadrant dependent random variables.Commun. Korean Math. Soc. 22 (2007), 137-143. Zbl 1168.60336, MR 2286902, 10.4134/CKMS.2007.22.1.137
Reference: [6] Ko, M.-H., Ryu, D.-H., Kim, T.-S.: Limiting behaviors of weighted sums for linearly negative quadrant dependent random variables.Taiwanese J. Math. 11 (2007), 511-522. Zbl 1126.60026, MR 2333362, 10.11650/twjm/1500404705
Reference: [7] Lehmann, E. L.: Some concepts of dependence.Ann. Math. Stat. 37 (1966), 1137-1153. Zbl 0146.40601, MR 0202228, 10.1214/aoms/1177699260
Reference: [8] Newman, C. M.: Asymptotic independence and limit theorems for positively and negatively dependent random variables.Inequalities in Statistics and Probability. IMS Lecture Notes Monogr. Ser. 5 Y. L. Tong Inst. Math. Statist. Hayward (1984), 127-140. MR 0789244
Reference: [9] Cabrera, M. Ordóñez, Volodin, A. I.: Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability.J. Math. Anal. Appl. 305 (2005), 644-658. MR 2131528, 10.1016/j.jmaa.2004.12.025
Reference: [10] Pyke, R., Root, D.: On convergence in $r$-mean of normalized partial sums.Ann. Math. Stat. 39 (1968), 379-381. Zbl 0164.47303, MR 0224137, 10.1214/aoms/1177698400
Reference: [11] Sung, S. H., Lisawadi, S., Volodin, A.: Weak laws of large numbers for arrays under a condition of uniform integrability.J. Korean Math. Soc. 45 (2008), 289-300. Zbl 1136.60319, MR 2375136, 10.4134/JKMS.2008.45.1.289
Reference: [12] Wan, C. G.: Law of large numbers and complete convergence for pairwise NQD random sequences.Acta Math. Appl. Sin. 28 (2005), 253-261 Chinese. MR 2157985
Reference: [13] Wang, J. F., Zhang, L. X.: A Berry-Esseen theorem for weakly negatively dependent random variables and its applications.Acta Math. Hung. 110 (2006), 293-308. Zbl 1121.60024, MR 2213231, 10.1007/s10474-006-0024-x
Reference: [14] Wang, X., Hu, S., Yang, W., Li, X.: Exponential inequalities and complete convergence for a LNQD sequence.J. Korean Statist. Soc. 39 (2010), 555-564. Zbl 1294.60037, MR 2780225, 10.1016/j.jkss.2010.01.002
Reference: [15] Wu, Q., Wang, Y., Wu, Y.: On some limit theorems for sums of NA random matrix sequences.Chin. J. Appl. Probab. Stat. 22 (2006), 56-62 Chinese. Zbl 1167.60315, MR 2275261
.

Files

Files Size Format View
AplMat_58-2013-5_3.pdf 286.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo