Previous |  Up |  Next

Article

Title: Regularity results for a class of obstacle problems in Heisenberg groups (English)
Author: Bigolin, Francesco
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 58
Issue: 5
Year: 2013
Pages: 531-554
Summary lang: English
.
Category: math
.
Summary: We study regularity results for solutions $u\in H W^{1,p}(\Omega )$ to the obstacle problem $$ \int _{\Omega } \mathcal {A}(x, \nabla _{\mathbb H} u)\nabla _{\mathbb H}(v-u) {\rm d} x \geq 0 \quad \forall v\in \mathcal K_{\psi ,u}(\Omega ) $$ such that $u\geq \psi $ a.e. in $\Omega $, where $\mathcal K_{\psi ,u}(\Omega )= \{v\in HW^{1,p}(\Omega )\colon v-u\in HW_{0}^{1,p}(\Omega ) v\geq \psi \text {\rm a.e. in} \Omega \}$, in Heisenberg groups $\mathbb H^n$. In particular, we obtain weak differentiability in the $T$-direction and horizontal estimates of Calderon-Zygmund type, i.e. $$ \begin{aligned}d T\psi \in HW^{1,p}_{\rm loc}(\Omega )&\Rightarrow Tu\in L^p_{\rm loc}(\Omega ), |\nabla _{\mathbb H}\psi |^p\in L^{q}_{\rm loc}(\Omega )&\Rightarrow |\nabla _{\mathbb H} u|^p \in L^q_{\rm loc}(\Omega ), \end{aligned}d $$ where $2<p<4$, $q>1$. (English)
Keyword: obstacle problem
Keyword: weak solution
Keyword: regularity
Keyword: Heisenberg group
MSC: 35D30
MSC: 35J20
idZBL: Zbl 06282095
idMR: MR3104617
DOI: 10.1007/s10492-013-0027-1
.
Date available: 2013-09-14T11:42:41Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143431
.
Reference: [1] Acerbi, E., Mingione, G.: Gradient estimates for a class of parabolic systems.Duke Math. J. 136 (2007), 285-320. Zbl 1113.35105, MR 2286632, 10.1215/S0012-7094-07-13623-8
Reference: [2] Bögelein, V., Duzaar, F., Mingione, G.: Degenerate problems with irregular obstacles.J. Reine Angew. Math. 650 (2011), 107-160. Zbl 1218.35088, MR 2770559
Reference: [3] Caffarelli, L. A.: The obstacle problem revisited.J. Fourier Anal. Appl. 4 (1998), 383-402. Zbl 0928.49030, MR 1658612, 10.1007/BF02498216
Reference: [4] Caffarelli, L. A.: The regularity of free boundaries in higher dimensions.Acta Math. 139 (1978), 155-184. Zbl 0386.35046, MR 0454350, 10.1007/BF02392236
Reference: [5] Capogna, L.: Regularity of quasi-linear equations in the Heisenberg group.Commun. Pure Appl. Math. 50 (1997), 867-889. Zbl 0886.22006, MR 1459590, 10.1002/(SICI)1097-0312(199709)50:9<867::AID-CPA3>3.0.CO;2-3
Reference: [6] Capogna, L., Danielli, D., Garofalo, N.: An embedding theorem and the Harnack inequality for nonlinear subelliptic equations.Commun. Partial Differ. Equations 18 (1993), 1765-1794. Zbl 0802.35024, MR 1239930, 10.1080/03605309308820992
Reference: [7] Capogna, L., Danielli, D., Pauls, S. D., Tyson, J. T.: An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem. Progress in Mathematics 259.Birkhäuser Basel (2007). MR 2312336
Reference: [8] Choe, H. J.: A regularity theory for a general class of quasilinear elliptic partial differential equations and obstacle problems.Arch. Ration. Mech. Anal. 114 (1991), 383-394. Zbl 0733.35024, MR 1100802, 10.1007/BF00376141
Reference: [9] Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space.J. Math. Imaging Vision 24 (2006), 307-326. MR 2235475, 10.1007/s10851-005-3630-2
Reference: [10] Cupini, G., Fusco, N., Petti, R.: Hölder continuity of local minimizers.J. Math. Anal. Appl. 235 (1999), 578-597. Zbl 0949.49022, MR 1703712, 10.1006/jmaa.1999.6410
Reference: [11] Danielli, D.: Regularity at the boundary for solutions of nonlinear subelliptic equations.Indiana Univ. Math. J. 44 (1995), 269-286. Zbl 0828.35022, MR 1336442, 10.1512/iumj.1995.44.1988
Reference: [12] Danielli, D., Garofalo, N., Petrosyan, A.: The sub-elliptic obstacle problem: $\mathcal{C}^{1, \alpha}$ regularity of the free boundary in Carnot groups of step two.Adv. Math. 211 (2007), 485-516. MR 2323535, 10.1016/j.aim.2006.08.008
Reference: [13] DiBenedetto, E., Manfredi, J.: On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems.Am. J. Math. 115 (1993), 1107-1134. Zbl 0805.35037, MR 1246185, 10.2307/2375066
Reference: [14] Domokos, A.: Differentiability of solutions for the non-degenerate $p$-Laplacian in the Heisenberg group.J. Differ. Equations 204 (2004), 439-470. Zbl 1065.35103, MR 2085543, 10.1016/j.jde.2004.05.009
Reference: [15] Domokos, A.: On the regularity of subelliptic $p$-harmonic functions in Carnot groups.Nonlinear Anal., Theory Methods Appl. 69 (2008), 1744-1756. Zbl 1165.35006, MR 2424544, 10.1016/j.na.2007.07.020
Reference: [16] Domokos, A., Manfredi, J. J.: Subelliptic Cordes estimates.Proc. Am. Math. Soc. 133 (2005), 1047-1056. Zbl 1081.35015, MR 2117205, 10.1090/S0002-9939-04-07819-0
Reference: [17] Domokos, A., Manfredi, J. J.: $C^{1,\alpha}$-regularity for $p$-harmonic functions in the Heisenberg group for $p$ near $2$.The $p$-harmonic Equation and Recent Advances in Analysis. Proceedings of the 3rd Prairie Analysis Seminar, Manhattan, KS, USA, October 17-18, 2003 Contemporary Mathematics 370 American Mathematical Society, Providence P. Poggi-Corradini (2005), 17-23. Zbl 1073.22004, MR 2126699
Reference: [18] Eleuteri, M.: Regularity results for a class of obstacle problems.Appl. Math., Praha 52 (2007), 137-170. Zbl 1164.49009, MR 2305870, 10.1007/s10492-007-0007-4
Reference: [19] Eleuteri, M., Habermann, J.: Calderón-Zygmund type estimates for a class of obstacle problems with $p(x)$ growth.J. Math. Anal. Appl. 372 (2010), 140-161. Zbl 1211.49046, MR 2672516, 10.1016/j.jmaa.2010.05.072
Reference: [20] Fuchs, M., Mingione, G.: Full $C^{1,a}$-regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth.Manuscr. Math. 102 (2000), 227-250. MR 1771942, 10.1007/s002291020227
Reference: [21] Goldstein, P., Zatorska-Goldstein, A.: Calderon-Zygmund type estimates for nonlinear systems with quadratic growth on the Heisenberg group.Forum Math. 20 (2008), 679-710. Zbl 1160.35356, MR 2431500, 10.1515/FORUM.2008.033
Reference: [22] Gromov, M.: Carnot-Carathéodory spaces seen from within.Sub-Riemannian Geometry. Proceedings of the Satellite Meeting of the 1st European Congress of Mathematics `Journées Nonholonomes: Géométrie Sous-Riemannienne, Théorie du Contrôle, Robotique', Paris, France, June 30--July 1, 1992 A. Bellaï che et al. Progress in Mathematics 144 Birkhauser, Basel (1996), 79-323. Zbl 0864.53025, MR 1421823
Reference: [23] Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear potential theory of degenerate elliptic equations. Unabridged republication of the 1993 original.Dover Publications Mineola (2006). Zbl 1115.31001, MR 2305115
Reference: [24] Hörmander, L.: Hypoelliptic second order differential equations.Acta Math. 119 (1967), 147-171. Zbl 0156.10701, MR 0222474, 10.1007/BF02392081
Reference: [25] Iwaniec, T.: Projections onto gradient fields and $L^p$-estimates for degenerated elliptic operators.Stud. Math. 75 (1983), 293-312. MR 0722254, 10.4064/sm-75-3-293-312
Reference: [26] Lewy, H.: An example of a smooth linear partial differential equation with solution.Ann. Math. 66 (1957), 155-158. MR 0088629, 10.2307/1970121
Reference: [27] Lions, J. L., Stampacchia, G.: Variational inequalities.Commun. Pure Appl. Math. 20 (1967), 493-519. Zbl 0152.34601, MR 0216344, 10.1002/cpa.3160200302
Reference: [28] Manfredi, J. J., Mingione, G.: Regularity results for quasilinear elliptic equations in the Heisenberg group.Math. Ann. 339 (2007), 485-544. Zbl 1128.35034, MR 2336058, 10.1007/s00208-007-0121-3
Reference: [29] Marchi, S.: Regularity for the solutions of double obstacle problems involving nonlinear elliptic operators on the Heisenberg group.Matematiche 56 (2001), 109-127. Zbl 1048.35024, MR 1997729
Reference: [30] Mingione, G.: The Calderón-Zygmund theory for elliptic problems with measure data.Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 6 (2007), 195-261. Zbl 1178.35168, MR 2352517
Reference: [31] Mingione, G.: Calderón-Zygmund estimates for measure data problems.C. R., Math., Acad. Sci. Paris 344 (2007), 437-442. Zbl 1190.35088, MR 2320247, 10.1016/j.crma.2007.02.005
Reference: [32] Mingione, G., Zatorska-Goldstein, A., Zhong, X.: Gradient regularity for elliptic equations in the Heisenberg group.Adv. Math. 222 (2009), 62-129. Zbl 1175.35033, MR 2531368, 10.1016/j.aim.2009.03.016
Reference: [33] Mu, J., Ziemer, W. P.: Smooth regularity of solutions of double obstacle problems involving degenerate elliptic equations.Commun. Partial Differ. Equations 16 (1991), 821-843. Zbl 0742.35010, MR 1113109, 10.1080/03605309108820780
Reference: [34] Rodrigues, J.-F.: Obstacle Problems in Mathematical Physics. North-Holland Mathematics Studies 134.North-Holland Amsterdam (1987). MR 0880369
Reference: [35] Stampacchia, G.: Formes bilineaires coercitives sur les ensembles convexes.C. R. Acad. Sci., Paris 258 (1964), 4413-4416 French. Zbl 0124.06401, MR 0166591
Reference: [36] Stein, E. M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. With the Assistance of Timothy S. Murphy. Princeton Mathematical Series 43.Princeton University Press Princeton (1993). MR 1232192
Reference: [37] Sussmann, H. J.: Geometry and optimal control.Mathematical Control Theory. With a Foreword by Sanjoy K. Mitter. Dedicated to Roger Ware Brockett on the occasion of his 60th birthday J. B. Baillieul et al. Springer (1998), 140-198. Zbl 1067.49500, MR 1661472
.

Files

Files Size Format View
AplMat_58-2013-5_4.pdf 346.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo