Previous |  Up |  Next

Article

Title: 0-distributive posets (English)
Author: Mokbel, Khalid A.
Author: Kharat, Vilas S.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 138
Issue: 3
Year: 2013
Pages: 325-335
Summary lang: English
.
Category: math
.
Summary: Several characterizations of 0-distributive posets are obtained by using the prime ideals as well as the semiprime ideals. It is also proved that if every proper $l$-filter of a poset is contained in a proper semiprime filter, then it is $0$-distributive. Further, the concept of a semiatom in 0-distributive posets is introduced and characterized in terms of dual atoms and also in terms of maximal annihilator. Moreover, semiatomic 0-distributive posets are defined and characterized. It is shown that a $0$-distributive poset $P$ is semiatomic if and only if the intersection of all non dense prime ideals of $P$ equals $(0]$. Some counterexamples are also given. (English)
Keyword: 0-distributive poset
Keyword: ideal
Keyword: semiprime ideal
Keyword: prime ideal
Keyword: semiatom
Keyword: semiatomic 0-distributive poset
MSC: 06A06
MSC: 06A75
MSC: 06D75
idZBL: Zbl 06260036
idMR: MR3136500
DOI: 10.21136/MB.2013.143440
.
Date available: 2013-09-14T11:49:39Z
Last updated: 2023-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143440
.
Reference: [1] Beran, L.: Length of ideals in lattices.Collect. Math. 46 (1995), 21-33. Zbl 0842.06006, MR 1366126
Reference: [2] Grätzer, G.: General Lattice Theory. New appendices by the author with B. A. Davey, et al., (Second ed.).Birkhäuser, Basel (1998). MR 1670580
Reference: [3] Grillet, P. A., Varlet, J. C.: Complementedness conditions in lattices.Bull. Soc. R. Sci. Liège 36 (1967), 628-642. Zbl 0157.34202, MR 0228389
Reference: [4] Halaš, R.: Characterization of distributive sets by generalized annihilators.Arch. Math., Brno 30 (1994), 25-27. MR 1282110
Reference: [5] Halaš, R., Rachůnek, J.: Polars and prime ideals in ordered sets.Discuss. Math., Algebra Stoch. Methods 15 (1995), 43-59. MR 1369627
Reference: [6] Jayaram, C.: Semiatoms in semilattices.Math. Semin. Notes, Kobe Univ. 10 (1982), 351-366. Zbl 0522.06003, MR 0704918
Reference: [7] Joshi, V. V., Waphare, B. N.: Characterizations of $0$-distributive posets.Math. Bohem. 130 (2005), 73-80. Zbl 1112.06001, MR 2128360, 10.21136/MB.2005.134222
Reference: [8] Kharat, V. S., Mokbel, K. A.: Primeness and semiprimeness in posets.Math. Bohem. 134 (2009), 19-30. Zbl 1212.06001, MR 2504684, 10.21136/MB.2009.140636
Reference: [9] Kharat, V. S., Mokbel, K. A.: Semiprime ideals and separation theorems for posets.Order 25 (2008), 195-210. Zbl 1155.06003, MR 2448404, 10.1007/s11083-008-9087-3
Reference: [10] Pawar, Y. S.: 0-1 distributive lattices.Indian J. Pure Appl. Math. 24 (1993), 173-179. Zbl 0765.06015, MR 1210389
Reference: [11] Pawar, Y. S., Dhamke, V. B.: $0$-distributive posets.Indian J. Pure Appl. Math. 20 (1989), 804-811. Zbl 0676.06009, MR 1012883
Reference: [12] Pawar, Y. S., Thakare, N. K.: $0$-distributive semilattices.Can. Math. Bull. 21 (1978), 469-475. MR 0523589, 10.4153/CMB-1978-080-6
Reference: [13] Rachůnek, J.: On $0$-modular and $0$-distributive semilattices.Math. Slovaca 42 (1992), 3-13. MR 1159487
Reference: [14] Varlet, J. C.: A generalization of the notion of pseudo-complementedness.Bull. Soc. R. Sci. Liège 37 (1968), 149-158. Zbl 0162.03501, MR 0228390
Reference: [15] Varlet, J. C.: Distributive semilattices and Boolean lattices.Bull. Soc. R. Sci. Liège 41 (1972), 5-10. Zbl 0237.06011, MR 0307991
.

Files

Files Size Format View
MathBohem_138-2013-3_6.pdf 193.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo