Title:
|
0-distributive posets (English) |
Author:
|
Mokbel, Khalid A. |
Author:
|
Kharat, Vilas S. |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
138 |
Issue:
|
3 |
Year:
|
2013 |
Pages:
|
325-335 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Several characterizations of 0-distributive posets are obtained by using the prime ideals as well as the semiprime ideals. It is also proved that if every proper $l$-filter of a poset is contained in a proper semiprime filter, then it is $0$-distributive. Further, the concept of a semiatom in 0-distributive posets is introduced and characterized in terms of dual atoms and also in terms of maximal annihilator. Moreover, semiatomic 0-distributive posets are defined and characterized. It is shown that a $0$-distributive poset $P$ is semiatomic if and only if the intersection of all non dense prime ideals of $P$ equals $(0]$. Some counterexamples are also given. (English) |
Keyword:
|
0-distributive poset |
Keyword:
|
ideal |
Keyword:
|
semiprime ideal |
Keyword:
|
prime ideal |
Keyword:
|
semiatom |
Keyword:
|
semiatomic 0-distributive poset |
MSC:
|
06A06 |
MSC:
|
06A75 |
MSC:
|
06D75 |
idZBL:
|
Zbl 06260036 |
idMR:
|
MR3136500 |
DOI:
|
10.21136/MB.2013.143440 |
. |
Date available:
|
2013-09-14T11:49:39Z |
Last updated:
|
2023-10-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143440 |
. |
Reference:
|
[1] Beran, L.: Length of ideals in lattices.Collect. Math. 46 (1995), 21-33. Zbl 0842.06006, MR 1366126 |
Reference:
|
[2] Grätzer, G.: General Lattice Theory. New appendices by the author with B. A. Davey, et al., (Second ed.).Birkhäuser, Basel (1998). MR 1670580 |
Reference:
|
[3] Grillet, P. A., Varlet, J. C.: Complementedness conditions in lattices.Bull. Soc. R. Sci. Liège 36 (1967), 628-642. Zbl 0157.34202, MR 0228389 |
Reference:
|
[4] Halaš, R.: Characterization of distributive sets by generalized annihilators.Arch. Math., Brno 30 (1994), 25-27. MR 1282110 |
Reference:
|
[5] Halaš, R., Rachůnek, J.: Polars and prime ideals in ordered sets.Discuss. Math., Algebra Stoch. Methods 15 (1995), 43-59. MR 1369627 |
Reference:
|
[6] Jayaram, C.: Semiatoms in semilattices.Math. Semin. Notes, Kobe Univ. 10 (1982), 351-366. Zbl 0522.06003, MR 0704918 |
Reference:
|
[7] Joshi, V. V., Waphare, B. N.: Characterizations of $0$-distributive posets.Math. Bohem. 130 (2005), 73-80. Zbl 1112.06001, MR 2128360, 10.21136/MB.2005.134222 |
Reference:
|
[8] Kharat, V. S., Mokbel, K. A.: Primeness and semiprimeness in posets.Math. Bohem. 134 (2009), 19-30. Zbl 1212.06001, MR 2504684, 10.21136/MB.2009.140636 |
Reference:
|
[9] Kharat, V. S., Mokbel, K. A.: Semiprime ideals and separation theorems for posets.Order 25 (2008), 195-210. Zbl 1155.06003, MR 2448404, 10.1007/s11083-008-9087-3 |
Reference:
|
[10] Pawar, Y. S.: 0-1 distributive lattices.Indian J. Pure Appl. Math. 24 (1993), 173-179. Zbl 0765.06015, MR 1210389 |
Reference:
|
[11] Pawar, Y. S., Dhamke, V. B.: $0$-distributive posets.Indian J. Pure Appl. Math. 20 (1989), 804-811. Zbl 0676.06009, MR 1012883 |
Reference:
|
[12] Pawar, Y. S., Thakare, N. K.: $0$-distributive semilattices.Can. Math. Bull. 21 (1978), 469-475. MR 0523589, 10.4153/CMB-1978-080-6 |
Reference:
|
[13] Rachůnek, J.: On $0$-modular and $0$-distributive semilattices.Math. Slovaca 42 (1992), 3-13. MR 1159487 |
Reference:
|
[14] Varlet, J. C.: A generalization of the notion of pseudo-complementedness.Bull. Soc. R. Sci. Liège 37 (1968), 149-158. Zbl 0162.03501, MR 0228390 |
Reference:
|
[15] Varlet, J. C.: Distributive semilattices and Boolean lattices.Bull. Soc. R. Sci. Liège 41 (1972), 5-10. Zbl 0237.06011, MR 0307991 |
. |