Previous |  Up |  Next

Article

Title: Finite-time cooperative tracking control for a class of second-order nonlinear multi-agent systems (English)
Author: Du, Haibo
Author: He, Yigang
Author: Cheng, Yingying
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 49
Issue: 4
Year: 2013
Pages: 507-523
Summary lang: English
.
Category: math
.
Summary: The problem of finite-time cooperative tracking control for a class of second-order nonlinear multi-agent systems is studied in this paper. The agent dynamic is described by a second-order nonlinear system with uncertain time-varying control coefficients and unknown nonlinear perturbations. Based on the finite-time control technique and graph theory, a class of distributed finite-time control laws are proposed which are only based on the neighbors' information. Under the proposed controller, it is shown that the states of all the agents can reach consensus in a finite time and the final consensus state is the desired signal. As an application of the proposed theoretic results, the problem of distributed finite-time attitude cooperative control for the roll channels of multiple bank-to-turn (BTT) missiles is solved. Simulation results are given to demonstrate the effectiveness of the proposed method. (English)
Keyword: finite-time control
Keyword: multi-agent systems
Keyword: nonlinear system
Keyword: bank-to-turn missiles
MSC: 93A14
MSC: 93C10
MSC: 93D15
MSC: 93D21
.
Date available: 2013-09-17T16:21:29Z
Last updated: 2013-09-17
Stable URL: http://hdl.handle.net/10338.dmlcz/143441
.
Reference: [1] Bhat, S., Bernstein, D.: Finite-time stability of continuous autonomous systems..SIAM J. Control Optim. 38 (2000), 751-766. Zbl 0945.34039, MR 1756893, 10.1137/S0363012997321358
Reference: [2] Cao, Y., Ren, W., Meng, Z.: Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking..Syst. Control Lett. 59 (2010), 522-529. Zbl 1207.93103, MR 2761208, 10.1016/j.sysconle.2010.06.002
Reference: [3] Cortes, J.: Finite-time convergent gradient flows with applications to network consensus..Automatica 42 (2006), 1993-2000. Zbl 1261.93058, MR 2259143, 10.1016/j.automatica.2006.06.015
Reference: [4] Dimarogonas, D., Tsiotras, P., Kyriakopoulos, K.: Leader-follower cooperative attitude control of multiple rigid bodies..Syst. Control Lett. 58 (2009), 429-435. Zbl 1161.93002, MR 2518091, 10.1016/j.sysconle.2009.02.002
Reference: [5] Dimarogonas, D., Kyriakopoulos, K.: On the rendezvous problem for multiple nonholonomic agents..IEEE Trans. Automat. Control 52 (2007), 916-922. MR 2324255, 10.1109/TAC.2007.895897
Reference: [6] Ding, S., Li, S., Zheng, W.: Nonsmooth stabilization of a class of nonlinear cascaded systems..Automatica 48 (2012), 2597-2606. MR 2961159, 10.1016/j.automatica.2012.06.060
Reference: [7] Dong, W., Farrell, A.: Cooperative control of multiple nonholonomic mobile agents..IEEE Trans. Automat. Control 53 (2008), 1434-1448. MR 2451233, 10.1109/TAC.2008.925852
Reference: [8] Duan, G., Wang, H.: Parameter design of smooth switching controller and application for bank-to-turn missiles. (In Chinese.).Aerospace Control 23 (2005), 41-46.
Reference: [9] Fax, A., Murray, R.: Information flow and cooperative control of vehicle formations..IEEE Trans. Automat. Control 49 (2004), 1453-1464. MR 2086912
Reference: [10] Gao, L., Tang, Y., Chen, W., Zhang, H.: Consensus seeking in multi-agent systems with an active leader and communication delays..Kybernetika 47 (2011), 773-789. Zbl 1236.93006, MR 2850463
Reference: [11] Hardy, G., Littlewood, J., Polya, G.: Inequalities..Cambridge University Press, Cambridge 1952. Zbl 0634.26008, MR 0046395
Reference: [12] Hong, Y., Gao, L., Cheng, D., Hu, J.: Lyapunov-based approach to multiagent systems with switching jointly connected interconnection..IEEE Trans. Automat. Control 52 (2007), 943-948. MR 2324260, 10.1109/TAC.2007.895860
Reference: [13] Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology..Automatica 42 (2006), 1177-1182. Zbl 1117.93300, MR 2230987, 10.1016/j.automatica.2006.02.013
Reference: [14] Hong, Y., Chen, G., Bushnell, L.: Distributed observers design for leader-following control of multi-agent networks..Automatica 44 (2008), 846-850. MR 2527101, 10.1016/j.automatica.2007.07.004
Reference: [15] Hui, Q., Haddad, W. M., Bhat, S. P.: Finite-time semistability and consensus for nonlinear dynamical networks..IEEE Trans. Automat. Control 53 (2008), 1887-1990. MR 2454755, 10.1109/TAC.2008.929392
Reference: [16] Jeon, I., Lee, J.: Homing guidance law for cooperative attack of multiple missiles..J. Guid., Control Dynam. 33 (2010), 275-280. 10.2514/1.40136
Reference: [17] Khoo, S., Xie, L., Man, Z.: Robust finite-time consensus tracking algorithm for multirobot systems..IEEE/ASME Trans. Mechatronics 14 (2009), 219-228. 10.1109/TMECH.2009.2014057
Reference: [18] Li, S., Du, H., Lin, X.: Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics..Automatica 47 (2011), 1706-1712. Zbl 1226.93014, MR 2886774, 10.1016/j.automatica.2011.02.045
Reference: [19] Li, S., Liu, H., Ding, S.: A speed control for a PMSM using finite-time feedback control and disturbance compensation..Trans. Inst. Measurement and Control 32 (2010), 170-187. 10.1177/0142331209339860
Reference: [20] Li, S., Ding, S., Li, Q.: Global set stabilisation of the spacecraft attitude using finite-time control technique..Internat. J. Control 5 (2009), 822-836. Zbl 1165.93328, MR 2523551, 10.1080/00207170802342818
Reference: [21] Li, S., Tian, Y.: Finite-time stability of cascaded time-varying systems..Internat. J. Control 80 (2007), 646-657. Zbl 1117.93004, MR 2304124, 10.1080/00207170601148291
Reference: [22] Olfati-Saber, R., Murray, R.: Consensus problems in networks of agents with switching topology and time-delays..IEEE Trans. Automat. Control 49 (2004), 1520-1533. MR 2086916, 10.1109/TAC.2004.834113
Reference: [23] Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory..IEEE Trans. Automat. Control 51 (2006), 410-420. MR 2205679, 10.1109/TAC.2005.864190
Reference: [24] Qian, C., Li, J.: Global finite-time stabilization by output feedback for planar systems without observable linearization..IEEE Trans. Automat. Control 50 (2005), 885-890. MR 2142009, 10.1109/TAC.2005.849253
Reference: [25] Qian, C., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems..IEEE Trans. Automat. Control 46 (2001), 1061-1079. Zbl 1012.93053, MR 1842139
Reference: [26] Ren, W., Atkins, E.: Distributed multi-vehicle coordinated control via local information exchange..Internat. J. Robust Nonlinear Control 17 (2007), 1002-1033. Zbl 1266.93010, MR 2333296
Reference: [27] Ren, W.: Distributed attitude alignment in spacecraft formation flying..Internat. J. Adapt. Control 21 (2007), 95-113. Zbl 1115.93338, MR 2298143
Reference: [28] Ren, W.: Multi-vehicle consensus with a time-varying reference state..Syst. Control Lett. 56 (2007), 474-483. Zbl 1157.90459, MR 2331998
Reference: [29] Ren, W.: On consensus algorithms for double-integrator dynamics..IEEE Trans. Automat. Control 53 (2008), 1503-1509. MR 2451239
Reference: [30] Shi, G., Hong, Y.: Global target aggregation and state agreement of nonlinear multi-agent systems with switching topologies..Automatica 45 (2009), 1165-1175. Zbl 1162.93308, MR 2531590
Reference: [31] Scutari, G., Barbarossa, S., Pescosolido, L.: Distributed decision through self-synchronizing sensor networks in the presence of propagation delays and asymmetric channels..IEEE Trans. Signal Process. 56 (2008), 1667-1684. MR 2516579, 10.1109/TSP.2007.909377
Reference: [32] Tan, F., Duan, G.: Global stabilizing controller design for linear time-varying systems and its application on BTT missiles..J. Systems Engrg. Electronics 19 (2008), 1178-1184. Zbl 1232.93079, 10.1016/S1004-4132(08)60216-9
Reference: [33] Xiao, F., Wang, L., Chen, J., Gao, Y.: Finite-time formation control for multi-agent systems..Automatica 45 (2009), 2605-2611. Zbl 1180.93006, MR 2889319, 10.1016/j.automatica.2009.07.012
Reference: [34] Wang, L., Xiao, F.: Finite-time consensus problems for networks of dynamic agents..IEEE Trans. Automat. Control 55 (2010), 950-955. MR 2654435, 10.1109/TAC.2010.2041610
Reference: [35] Wang, X., Sun, X., Li, S., Ye, H.: Finite-time position tracking control of rigid hydraulic manipulators based on high-order sliding mode..In: Proc. Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 226 (2012), pp. 394-415.
Reference: [36] Wang, X., Hong, Y.: Finite-time consensus for multi-agent networks with second-order agent dynamics..In: Proc. 17th IFAC World Congress, Korea 2008, pp. 15185-15190.
Reference: [37] Zhang, C., Li, S., Ding, S.: Finite-time output feedback stabilization and control for a quadrotor mini-aircraft..Kybernetika 48 (2012), 206-222. Zbl 1246.93119, MR 2954321
.

Files

Files Size Format View
Kybernetika_49-2013-4_1.pdf 468.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo