Previous |  Up |  Next

Article

Title: An iterative algorithm for computing the cycle mean of a Toeplitz matrix in special form (English)
Author: Szabó, Peter
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 49
Issue: 4
Year: 2013
Pages: 636-643
Summary lang: English
.
Category: math
.
Summary: The paper presents an iterative algorithm for computing the maximum cycle mean (or eigenvalue) of $n\times n$ triangular Toeplitz matrix in max-plus algebra. The problem is solved by an iterative algorithm which is applied to special cycles. These cycles of triangular Toeplitz matrices are characterized by sub-partitions of $n-1$. (English)
Keyword: max-plus algebra
Keyword: eigenvalue
Keyword: sub-partition of an integer
Keyword: Toeplitz matrix
MSC: 15A80
MSC: 15B05
MSC: 90C27
.
Date available: 2013-09-17T16:33:02Z
Last updated: 2013-09-17
Stable URL: http://hdl.handle.net/10338.dmlcz/143450
.
Reference: [1] Butkovič, P.: Max-linear Systems: Theory and Algorithms..Springer-Verlag, London 2010. Zbl 1202.15032, MR 2681232
Reference: [2] Cuninghame-Green, R. A.: Minimax Algebra..Springer-Verlag, Berlin 1979. Zbl 0739.90073, MR 0580321
Reference: [3] Heidergott, B., Olsder, G. J., Woude, J. van der: Max Plus at Work. Modeling and Analysis of Synchronized Systems..Princeton University Press 2004.
Reference: [4] Heinig, G.: Not every matrix is similar to a Toeplitz matrix..Linear Algebra Appl. 332-334 (2001), 519-531. Zbl 0985.15013, MR 1839449
Reference: [5] Karp, R. M.: A characterization of the minimum cycle mean in a digraph..Discrete Math. 23 (1978), 309-311. Zbl 0386.05032, MR 0523080
Reference: [6] Landau, H. J.: Tile inverse eigenvalue problem for real symmetric Toeplitz matrices..J. Amer. Math. Soc. 7 (1994), 749-767. MR 1234570, 10.1090/S0894-0347-1994-1234570-6
Reference: [7] Plavka, J.: Eigenproblem for monotone and Toeplitz matrices in a max-algebra..Optimization 53 (2004), 95-101. Zbl 1079.93033, MR 2040637, 10.1080/02331930410001661497
Reference: [8] Szabó, P.: A short note on the weighted sub-partition mean of integers..Oper. Res. Lett. 37(5) (2009), 356-358. Zbl 1231.05017, MR 2573448, 10.1016/j.orl.2009.04.003
Reference: [9] Zimmermann, K.: Extremální algebra (in Czech)..Ekonomický ústav SAV, Praha 1976.
.

Files

Files Size Format View
Kybernetika_49-2013-4_9.pdf 304.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo