Previous |  Up |  Next

Article

Keywords:
time scales; integral boundary condition; second-order boundary value problem; cone; positive solution
Summary:
We consider the existence of at least one positive solution to the dynamic boundary value problem \begin{align*} -y^{\Delta\Delta}(t) & = \lambda f(t,y(t))\text{, }t\in [0,T]_{\mathbb{T}} y(0) & = \int_{\tau_1}^{\tau_2}F_1(s,y(s)) \Delta s y\left(\sigma^2(T)\right) & = \int_{\tau_3}^{\tau_4}F_2(s,y(s)) \Delta s, \end{align*} where $\mathbb{T}$ is an arbitrary time scale with $0<\tau_1<\tau_2<\sigma^2(T)$ and $0<\tau_3<\tau_4<\sigma^2(T)$ satisfying $\tau_1$, $\tau_2$, $\tau_3$, $\tau_4\in \mathbb{T}$, and where the boundary conditions at $t=0$ and $t=\sigma^2(T)$ can be both nonlinear and nonlocal. This extends some recent results on second-order semipositone dynamic boundary value problems, and we illustrate these extensions with some examples.
References:
[1] Agarwal R., Meehan M., O'Regan D.: Fixed Point Theory and Applications. Cambridge University Press, Cambridge, 2001. DOI 10.1017/CBO9780511543005.008 | MR 1825411 | Zbl 1159.54001
[2] Anderson D.R.: Second-order $n$-point problems on time scales with changing-sign nonlinearity. Adv. Dynamical Sys. Appl. 1 (2006), 17–27. MR 2287632 | Zbl 1119.34310
[3] Anderson D.R.: Existence of solutions for first-order multi-point problems with changing-sign nonlinearity. J. Difference Equ. Appl. 14 (2008), 657–666. DOI 10.1080/10236190701736682 | MR 2417015 | Zbl 1158.34006
[4] Anderson D.R., Zhai C.: Positive solutions to semi-positone second-order three-point problems on time scales. Appl. Math. Comput. 215 (2010), 3713–3720. DOI 10.1016/j.amc.2009.11.010 | MR 2578954 | Zbl 1188.34119
[5] Anuradha V., Hai D.D., Shivaji R.: Existence results for superlinear semipositone BVPs. Proc. Amer. Math. Soc. 124 (1996), 757–763. DOI 10.1090/S0002-9939-96-03256-X | MR 1317029
[6] Boucherif A.: Second-order boundary value problems with integral boundary conditions. Nonlinear Anal. 70 (2009), 364–371. DOI 10.1016/j.na.2007.12.007 | MR 2468243 | Zbl 1169.34310
[7] Bohner M., Peterson A.C.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston, 2001. MR 1843232 | Zbl 0978.39001
[8] Dahal R.: Positive solutions of semipositone singular Dirichlet dynamic boundary value problems. Nonlinear Dyn. Syst. Theory 9 (2009), 361–374. MR 2590764 | Zbl 1205.34128
[9] Dahal R.: Positive solutions for a second-order, singular semipositone dynamic boundary value problem. Int. J. Dyn. Syst. Differ. Equ. 3 (2011), 178–188. MR 2797048 | Zbl 1214.34090
[10] Erbe L.H., Peterson A.C.: Positive solutions for a nonlinear differential equation on a measure chain. Math. Comput. Modelling 32 (2000), 571–585. DOI 10.1016/S0895-7177(00)00154-0 | MR 1791165 | Zbl 0963.34020
[11] Feng M.: Existence of symmetric positive solutions for a boundary value problem with integral boundary conditions. Appl. Math. Lett. 24 (2011), 1419–1427. DOI 10.1016/j.aml.2011.03.023 | MR 2793645 | Zbl 1221.34062
[12] Goodrich C.S.: Existence of a positive solution to a system of discrete fractional boundary value problems. Appl. Math. Comput. 217 (2011), 4740–4753. DOI 10.1016/j.amc.2010.11.029 | MR 2745153 | Zbl 1215.39003
[13] Goodrich C.S.: Existence of a positive solution to a first-order $p$-Laplacian BVP on a time scale. Nonlinear Anal. 74 (2011), 1926–1936. MR 2764390 | Zbl 1236.34112
[14] Goodrich C.S.: Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions. Comput. Math. Appl. 61 (2011), 191–202. DOI 10.1016/j.camwa.2010.10.041 | MR 2754129 | Zbl 1211.39002
[15] Goodrich C.S.: On discrete sequential fractional boundary value problems. J. Math. Anal. Appl. 385 (2012), 111–124. DOI 10.1016/j.jmaa.2011.06.022 | MR 2832079 | Zbl 1236.39008
[16] Goodrich C.S.: The existence of a positive solution to a second-order $p$-Laplacian BVP on a time scale. Appl. Math. Lett. 25 (2012), 157–162. DOI 10.1016/j.aml.2011.08.005 | MR 2843745
[17] Goodrich C.S.: Positive solutions to boundary value problems with nonlinear boundary conditions. Nonlinear Anal. 75 (2012), 417–432. DOI 10.1016/j.na.2011.08.044 | MR 2846811
[18] Goodrich C.S.: Nonlocal systems of BVPs with asymptotically superlinear boundary conditions. Comment. Math. Univ. Carolin. 53 (2012), 79–97. MR 2880912 | Zbl 1249.34054
[19] Goodrich C.S.: On a discrete fractional three-point boundary value problem. J. Difference Equ. Appl. 18 (2012), 397–415. DOI 10.1080/10236198.2010.503240 | MR 2901829 | Zbl 1253.26010
[20] Goodrich C.S.: On nonlocal BVPs with boundary conditions with asymptotically sublinear or superlinear growth. Math. Nachr. 285 (2012), 1404–1421. MR 2959967
[21] Goodrich C.S.: On discrete fractional boundary value problems with nonlocal, nonlinear boundary conditions. Commun. Appl. Anal. 16 (2012), 433–446. MR 3051308
[22] Goodrich C.S.: Nonlocal systems of BVPs with asymptotically sublinear boundary conditions. Appl. Anal. Discrete Math. 6 (2012), 174–193. DOI 10.2298/AADM120329010G | MR 3012670
[23] Goodrich C.S.: On nonlinear boundary conditions satisfying certain asymptotic behavior. Nonlinear Anal. 76 (2013), 58–67. DOI 10.1016/j.na.2012.07.023 | MR 2974249 | Zbl 1264.34030
[24] Goodrich C.S.: On a first-order semipositone discrete fractional boundary value problem. Arch. Math. (Basel) 99 (2012), 509–518. DOI 10.1007/s00013-012-0463-2 | MR 3001554 | Zbl 1263.26016
[25] Goodrich C.S.: On semipositone discrete fractional boundary value problems with nonlocal boundary conditions. J. Difference Equ. Appl., doi: 10.1080/10236198.2013.775259.
[26] J. Graef, L. Kong: Positive solutions for third order semipositone boundary value problems. Appl. Math. Lett. 22 (2009), 1154–1160. DOI 10.1016/j.aml.2008.11.008 | MR 2532528 | Zbl 1173.34313
[27] Hilger S.: Analysis on measure chains – a unified approach to continuous and discrete calculus. Results Math. 18 (1990), 18–56. DOI 10.1007/BF03323153 | MR 1066641 | Zbl 0722.39001
[28] Jia M., Liu X.: Three nonnegative solutions for fractional differential equations with integral boundary conditions. Comput. Math. Appl. 62 (2011), 1405–1412. DOI 10.1016/j.camwa.2011.03.026 | MR 2824728 | Zbl 1235.34016
[29] Infante G.: Nonlocal boundary value problems with two nonlinear boundary conditions. Commun. Appl. Anal. 12 (2008), 279–288. MR 2499284 | Zbl 1198.34025
[30] Infante G., Pietramala P.: Existence and multiplicity of non-negative solutions for systems of perturbed Hammerstein integral equations. Nonlinear Anal. 71 (2009), 1301–1310. DOI 10.1016/j.na.2008.11.095 | MR 2527550 | Zbl 1169.45001
[31] Infante G., Pietramala P.: Eigenvalues and non-negative solutions of a system with nonlocal BCs. Nonlinear Stud. 16 (2009), 187–196. MR 2527180 | Zbl 1184.34027
[32] Infante G., Pietramala P.: A third order boundary value problem subject to nonlinear boundary conditions. Math. Bohem. 135 (2010), 113–121. MR 2723078 | Zbl 1224.34036
[33] G. Infante, F. Minhós, P. Pietramala: Non-negative solutions of systems of ODEs with coupled boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4952–4960. DOI 10.1016/j.cnsns.2012.05.025 | MR 2960289
[34] Sun J.P., Li W.T.: Existence of positive solutions to semipositone Dirichlet BVPs on time scales. Dynam. Systems Appl. 16 (2007), 571–578. MR 2356340
[35] Sun J.P., Li W.T.: Solutions and positive solutions to semipositone Dirichlet BVPs on time scales. Dynam. Systems Appl. 17 (2008), 303–312. MR 2436566
Partner of
EuDML logo