Previous |  Up |  Next

Article

Title: The Rothe method for the McKendrick-von Foerster equation (English)
Author: Leszczyński, Henryk
Author: Zwierkowski, Piotr
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 3
Year: 2013
Pages: 589-602
Summary lang: English
.
Category: math
.
Summary: We present the Rothe method for the McKendrick-von Foerster equation with initial and boundary conditions. This method is well known as an abstract Euler scheme in extensive literature, e.g. K. Rektorys, The Method of Discretization in Time and Partial Differential Equations, Reidel, Dordrecht, 1982. Various Banach spaces are exploited, the most popular being the space of bounded and continuous functions. We prove the boundedness of approximate solutions and stability of the Rothe method in $L^\infty $ and $L^1$ norms. Proofs of these results are based on comparison inequalities. Our theory is illustrated by numerical experiments. Our research is motivated by certain models of mathematical biology. (English)
Keyword: Rothe method
Keyword: stability
Keyword: comparison
MSC: 65M12
MSC: 65M99
MSC: 92B99
idZBL: Zbl 06282100
idMR: MR3125644
DOI: 10.1007/s10587-013-0042-0
.
Date available: 2013-10-07T11:57:36Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143479
.
Reference: [1] Abia, L. M., López-Marcos, J. C.: On the numerical integration of non-local terms for age-structured population models.Math. Biosci. 157 (1999), 147-167. MR 1686472, 10.1016/S0025-5564(98)10080-9
Reference: [2] Jr., J. Douglas, Milner, F. A.: Numerical methods for a model of population dynamics.Calcolo 24 (1987), 247-254. Zbl 0658.65145, MR 1004520, 10.1007/BF02679109
Reference: [3] Feichtinger, G., Prskawetz, A., Veliov, V. M.: Age-structured optimal control in population economics.Theor. Popul. Biol. 65 (2004), 373-387. Zbl 1110.92035, 10.1016/j.tpb.2003.07.006
Reference: [4] Gurtin, M. E., MacCamy, R. C.: Non-linear age-dependend population dynamics.Arch. Ration. Mech. Anal. 54 (1974), 281-300. MR 0354068, 10.1007/BF00250793
Reference: [5] Hoppensteadt, F.: Mathematical Theories of Populations: Demographics, Genetics, and Epidemics. CBMS-NSF Regional Conference Series in Applied Mathematics 20.SIAM Philadelphia (1975). MR 0526771
Reference: [6] Iannelli, M.: Mathematical Theory of Age-Structured Population Dynamics. Applied Mathematics Monographs 7.Giardini Editori e Stampatori Pisa (1994).
Reference: [7] Jossey, J., Hirani, A. N.: Equivalence theorems in numerical analysis: integration, differentiation and interpolation.http://arxiv.org/abs/0709.4046 (2007).
Reference: [8] Kačur, J.: Application of Rothe's method to perturbed linear hyperbolic equations and variational inequalities.Czech. Math. J. 34 (1984), 92-106. Zbl 0554.35086, MR 0731982
Reference: [9] Kikuchi, N., Kačur, J.: Convergence of Rothe's method in Hölder spaces.Appl. Math., Praha 48 (2003), 353-365. Zbl 1099.65079, MR 2008889, 10.1023/B:APOM.0000024481.01947.da
Reference: [10] Kostova, T. V.: Numerical solutions of a hyperbolic differential-integral equation.Comput. Math. Appl. 15 (1988), 427-436. Zbl 0651.65099, MR 0953556, 10.1016/0898-1221(88)90270-2
Reference: [11] Lax, P. D., Richtmyer, R. D.: Survey of the stability of linear finite difference equations.Commun. Pure Appl. Math. 9 (1956), 267-293. Zbl 0072.08903, MR 0079204, 10.1002/cpa.3160090206
Reference: [12] Manfredi, P., Williams, J. R.: Realistic population dynamics in epidemiological models: the impact of population decline on the dynamics of childhood infectious diseases. Measles in Italy as an example.Math. Biosci. 192 (2004), 153-175. Zbl 1073.92046, MR 2120645, 10.1016/j.mbs.2004.11.006
Reference: [13] Milner, F. A.: A finite element method for a two-sex model of population dynamics.Numer. Methods Partial Differ. Equations 4 (1988), 329-345. Zbl 0661.65149, MR 1012488, 10.1002/num.1690040406
Reference: [14] Murray, J. D.: Mathematical Biology. Vol. 1: An introduction. 3rd ed. Interdisciplinary Applied Mathematics 17.Springer New York (2002). MR 1908418
Reference: [15] Ostermann, A., Thalhammer, M.: Convergence of Runge-Kutta methods for nonlinear parabolic equations.Appl. Numer. Math. 42 (2002), 367-380. Zbl 1004.65093, MR 1921348, 10.1016/S0168-9274(01)00161-1
Reference: [16] Rektorys, K.: The Method of Discretization in Time and Partial Differential Equations.Mathematics and Its Applications (East European Series) vol. 4 Reidel, Dordrecht (1982). Zbl 0522.65059, MR 0689712
Reference: [17] Sanz-Serna, J. M., Palencia, C.: A general equivalence theorem in the theory of discretization methods.Math. Comput. 45 (1985), 143-152. Zbl 0599.65034, MR 0790648, 10.1090/S0025-5718-1985-0790648-7
Reference: [18] Slodička, M.: Semigroup formulation of Rothe's method: application to parabolic problems.Commentat. Math. Univ. Carol. 33 (1992), 245-260. Zbl 0756.65121, MR 1189655
Reference: [19] Spigler, R., Vianello, M.: Convergence analysis of the semi-implicit Euler method for abstract evolution equations.Numer. Funct. Anal. Optimization 16 (1995), 785-803. Zbl 0827.65061, MR 1341112, 10.1080/01630569508816645
Reference: [20] Tchuenche, J. M.: Convergence of an age-physiology dependent population model.Sci., Ser. A, Math. Sci. (N.S.) 15 (2007), 23-30. Zbl 1138.92366, MR 2367910
Reference: [21] Walter, W.: Ordinary Differential Equations Transl. from the German by Russell Thompson. Graduate Texts in Mathematics. Readings in Mathematics 182.Springer New York (1998). MR 1629775
Reference: [22] al., J. A. J. Metz et: The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics 68. Springer Berlin (1986). MR 0860959
.

Files

Files Size Format View
CzechMathJ_63-2013-3_3.pdf 702.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo