Title:
|
Some new examples of recurrence and non-recurrence sets for products of rotations on the unit circle (English) |
Author:
|
Grivaux, Sophie |
Author:
|
Roginskaya, Maria |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
63 |
Issue:
|
3 |
Year:
|
2013 |
Pages:
|
603-627 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study recurrence and non-recurrence sets for dynamical systems on compact spaces, in particular for products of rotations on the unit circle $\mathbb T$. A set of integers is called $r$-Bohr if it is recurrent for all products of $r$ rotations on $\mathbb T$, and Bohr if it is recurrent for all products of rotations on $\mathbb T$. It is a result due to Katznelson that for each $r\ge 1$ there exist sets of integers which are $r$-Bohr but not $(r+1)$-Bohr. We present new examples of $r$-Bohr sets which are not Bohr, thanks to a construction which is both flexible and completely explicit. Our results are related to an old combinatorial problem of Veech concerning syndetic sets and the Bohr topology on $\mathbb Z$, and its reformulation in terms of recurrence sets which is due to Glasner and Weiss. (English) |
Keyword:
|
recurrence for dynamical systems |
Keyword:
|
non-recurrence for dynamical systems |
Keyword:
|
rotations of the unit circle |
Keyword:
|
syndetic set |
Keyword:
|
Bohr topology on $\mathbb {Z}$ |
Keyword:
|
Bohr set |
Keyword:
|
$r$-Bohr set |
MSC:
|
37A45 |
MSC:
|
37B05 |
MSC:
|
37B20 |
idZBL:
|
Zbl 06282101 |
idMR:
|
MR3125645 |
DOI:
|
10.1007/s10587-013-0043-z |
. |
Date available:
|
2013-10-07T11:59:18Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143480 |
. |
Reference:
|
[1] Badea, C., Grivaux, S.: Unimodular eigenvalues, uniformly distributed sequences and linear dynamics.Adv. Math. 211 (2007), 766-793. Zbl 1123.47006, MR 2323544, 10.1016/j.aim.2006.09.010 |
Reference:
|
[2] Bergelson, V., Junco, A. Del, Lemańczyk, M., Rosenblatt, J.: Rigidity and non-recurrence along sequences.Preprint 2011, arXiv:1103.0905. |
Reference:
|
[3] Bergelson, V., Haland, I. J.: Sets of recurrence and generalized polynomials.V. Bergelson, et al. Convergence in Ergodic Theory and Probability Papers from the conference, Ohio State University, Columbus, OH, USA, June 23-26, 1993, de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ. 5 (1996), 91-110. Zbl 0958.28014, MR 1412598 |
Reference:
|
[4] Bergelson, V., Lesigne, E.: Van der Corput sets in $\mathbb Z^d$.Colloq. Math. 110 (2008), 1-49. MR 2353898, 10.4064/cm110-1-1 |
Reference:
|
[5] Boshernitzan, M., Glasner, E.: On two recurrence problems.Fundam. Math. 206 (2009), 113-130. Zbl 1187.37020, MR 2576263, 10.4064/fm206-0-7 |
Reference:
|
[6] Furstenberg, H.: Poincaré recurrence and number theory.Bull. Am. Math. Soc., New Ser. 5 (1981), 211-234. Zbl 0481.28013, MR 0628658, 10.1090/S0273-0979-1981-14932-6 |
Reference:
|
[7] Furstenberg, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory.Princeton University Press, Princeton, N. J. (1981). Zbl 0459.28023, MR 0603625 |
Reference:
|
[8] Glasner, E.: On minimal actions of Polish groups.Topology Appl. 85 (1998), 119-125. Zbl 0923.54030, MR 1617456, 10.1016/S0166-8641(97)00143-0 |
Reference:
|
[9] Glasner, E.: Classifying dynamical systems by their recurrence properties.Topol. Methods Nonlinear Anal. 24 (2004), 21-40. Zbl 1072.37017, MR 2111980, 10.12775/TMNA.2004.018 |
Reference:
|
[10] Glasner, E., Weiss, B.: On the interplay between measurable and topological dynamics.Handbook of Dynamical Systems vol. 1B B. Hasselblatt et al. Amsterdam, Elsevier (2006), 597-648. Zbl 1130.37303, MR 2186250 |
Reference:
|
[11] Grivaux, S.: Non-recurrence sets for weakly mixing dynamical systems.(to appear) in Ergodic Theory Dyn. Syst., http://dx.doi.org/10.1017/etds.2012.116. 10.1017/etds.2012.116 |
Reference:
|
[12] Kannan, R., Lovász, L.: Covering minima and lattice-point-free convex bodies.Ann. Math. (2) 128 (1988), 577-602. Zbl 0659.52004, MR 0970611 |
Reference:
|
[13] Katznelson, Y.: Chromatic numbers of Cayley graphs on $\mathbb Z$ and recurrence.Combinatorica 21 (2001), 211-219. MR 1832446, 10.1007/s004930100019 |
Reference:
|
[14] Kříž, I.: Large independent sets in shift-invariant graphs.Graphs Comb. 3 (1987), 145-158. Zbl 0641.05044, MR 0932131, 10.1007/BF01788538 |
Reference:
|
[15] Pestov, V.: Forty-plus annotated questions about large topological groups.Open Problems in Topology II Elliott M. Pearl Elsevier, Amsterdam (2007), 439-450. MR 2023411 |
Reference:
|
[16] Petersen, K.: Ergodic Theory.Cambridge Studies in Advanced Mathematics 2 Cambridge University Press, Cambridge (1983). Zbl 0507.28010, MR 0833286 |
Reference:
|
[17] Queffélec, M.: Substitution Dynamical Systems. Spectral analysis. 2nd ed.Lecture Notes in Mathematics 1294. Springer, Berlin (2010). Zbl 1225.11001, MR 2590264 |
Reference:
|
[18] Veech, W. A.: The equicontinuous structure relation for minimal abelian transformation groups.Am. J. Math. 90 (1968), 723-732. Zbl 0177.51204, MR 0232377, 10.2307/2373480 |
Reference:
|
[19] Walters, P.: An Introduction to Ergodic Theory.Graduate Texts in Mathematics vol. 79 Springer, New-York (1982). Zbl 0475.28009, MR 0648108, 10.1007/978-1-4612-5775-2 |
Reference:
|
[20] Weiss, B.: Single Orbit Dynamics.CBMS Regional Conference Series in Math. 95. AMS, Providence (2000). Zbl 1083.37500, MR 1727510 |
. |