Previous |  Up |  Next


tree; $D$-space; $\lambda $-tree; property $\gamma $; collectionwise Hausdorff
For any ordinal $\lambda $ of uncountable cofinality, a $\lambda $-tree is a tree $T$ of height $\lambda $ such that $|T_{\alpha }|<{\rm cf}(\lambda )$ for each $\alpha <\lambda $, where $T_{\alpha }=\{x\in T\colon {\rm ht}(x)=\alpha \}$. In this note we get a Pressing Down Lemma for $\lambda $-trees and discuss some of its applications. We show that if $\eta $ is an uncountable ordinal and $T$ is a Hausdorff tree of height $\eta $ such that $|T_{\alpha }|\leq \omega $ for each $\alpha <\eta $, then the tree $T$ is collectionwise Hausdorff if and only if for each antichain $C\subset T$ and for each limit ordinal $\alpha \leq \eta $ with ${\rm cf}(\alpha )>\omega $, $\{{\rm ht}(c)\colon c\in C\} \cap \alpha $ is not stationary in $\alpha $. In the last part of this note, we investigate some properties of $\kappa $-trees, $\kappa $-Suslin trees and almost $\kappa $-Suslin trees, where $\kappa $ is an uncountable regular cardinal.
[1] Borges, C. R., Wehrly, A. C.: A study of $D$-spaces. Topology Proc. 16 (1991), 7-15. MR 1206448 | Zbl 0787.54023
[2] Devlin, K. J., Shelah, S.: Suslin properties and tree topologies. Proc. Lond. Math. Soc., III. Ser. 39 (1979), 237-252. DOI 10.1112/plms/s3-39.2.237 | MR 0548979
[3] Engelking, R.: General Topology. Rev. and compl. ed. Sigma Series in Pure Mathematics 6. Heldermann Berlin (1989). MR 1039321
[4] Fleissner, W. G.: Remarks on Suslin properties and tree topologies. Proc. Am. Math. Soc. 80 (1980), 320-326. DOI 10.1090/S0002-9939-1980-0577767-2 | MR 0577767
[5] Fleissner, W. G., Stanley, A. M.: $D$-spaces. Topology Appl. 114 (2001), 261-271. DOI 10.1016/S0166-8641(00)00042-0 | MR 1838325 | Zbl 0983.54024
[6] Fodor, G.: Eine Bemerkung zur Theorie der regressiven Funktionen. Acta Sci. Math. 17 (1956), 139-142. MR 0082450 | Zbl 0072.04302
[7] Guo, H. F., Junnila, H.: On $D$-spaces and thick covers. Topology Appl. 158 (2011), 2111-2121. DOI 10.1016/j.topol.2011.06.053 | MR 2831896
[8] Hart, K. P.: More remarks on Suslin properties and tree topologies. Topology Appl. 15 (1983), 151-158. DOI 10.1016/0166-8641(83)90033-0 | MR 0686092
[9] Kunen, K.: Set Theory. An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics vol. 102 North-Holland, Amsterdam (1980). MR 0597342 | Zbl 0443.03021
[10] Nyikos, P. J.: Various topologies on trees. Proceedings of the Tennessee Topology Conference, Nashville, TN, USA, June 10-11, 1996 World Scientific Singapore P. R. Misra et al. 167-198 (1997). MR 1607401 | Zbl 0913.54028
[11] Douwen, E. K. van, Lutzer, D. J.: A note on paracompactness in generalized ordered spaces. Proc. Am. Math. Soc. 125 (1997), 1237-1245. DOI 10.1090/S0002-9939-97-03902-6 | MR 1396999
[12] Douwen, E. K. van, Pfeffer, W. F.: Some properties of the Sorgenfrey line and related spaces. Pac. J. Math. 81 (1979), 371-377. DOI 10.2140/pjm.1979.81.371 | MR 0547605
Partner of
EuDML logo