# Article

Full entry | PDF   (0.2 MB)
Keywords:
spectra of graphs; spectral radius; $\ddag$-shape tree
Summary:
Let $A(G)$ be the adjacency matrix of $G$. The characteristic polynomial of the adjacency matrix $A$ is called the characteristic polynomial of the graph $G$ and is denoted by $\phi (G, \lambda )$ or simply $\phi (G)$. The spectrum of $G$ consists of the roots (together with their multiplicities) $\lambda _1(G)\geq \lambda _2(G)\geq \ldots \geq \lambda _n(G)$ of the equation $\phi (G, \lambda )=0$. The largest root $\lambda _1(G)$ is referred to as the spectral radius of $G$. A $\ddag$-shape is a tree with exactly two of its vertices having maximal degree 4. We will denote by $G(l_1, l_2, \ldots , l_7)$ $(l_1\geq 0$, $l_i\geq 1$, $i=2,3,\ldots , 7)$ a $\ddag$-shape tree such that $G(l_1, l_2, \ldots , l_7)-u-v=P_{l_1}\cup P_{l_2}\cup \ldots \cup P_{l_7}$, where $u$ and $v$ are the vertices of degree 4. In this paper we prove that $3\sqrt {2}/{2}< \lambda _1(G(l_1, l_2, \ldots , l_7))< {5}/{2}$.
References:
[1] Cvetiović, D., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Applications. VEB Deutscher Verlag der Wissenschaften, Berlin (1980).
[2] Harary, F.: Graph Theory. Addison-Wesley Series in Mathematics. Addison-Wesley Publishing Company. IX, Reading, Mass.-Menlo Park London (1969). MR 0256911 | Zbl 0196.27202
[3] Hoffman, A. J., Smith, J. H.: On the spectral radii of topologically equivalent graphs. Recent Adv. Graph Theory, Proc. Symp. Prague 1974 Academia, Praha, 1975 273-281. MR 0404028 | Zbl 0327.05125
[4] Hu, S. B.: On the spectral radius of $H$-shape trees. Int. J. Comput. Math. 87 (2010), 976-979. DOI 10.1080/00207160802051022 | MR 2665706 | Zbl 1209.05047
[5] Godsil, C. D.: Algebraic Combinatorics. Chapman and Hall, New York (1993). MR 1220704 | Zbl 0784.05001
[6] Godsil, C. D.: Spectra of trees. Convexity and Graph Theory. Proc. Conf., Israel 1981, Ann. Discrete Math. 20 (1984), 151-159. MR 0791025 | Zbl 0559.05040
[7] Wang, W., Xu, C. X.: On the spectral characterization of $T$-shape trees. Linear Algebra Appl. 414 (2006), 492-501. DOI 10.1016/j.laa.2005.10.031 | MR 2214401 | Zbl 1086.05050
[8] Woo, R., Neumaier, A.: On graphs whose spectral radius is bounded by $\frac32\sqrt{2}$. Graphs Comb. 23 (2007), 713-726. DOI 10.1007/s00373-007-0745-9 | MR 2365422

Partner of