Title:
|
On the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$ (English) |
Author:
|
Keskin, Refik |
Author:
|
Şiar, Zafer |
Author:
|
Karaatlı, Olcay |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
63 |
Issue:
|
3 |
Year:
|
2013 |
Pages:
|
783-797 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this study, we determine when the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$ has an infinite number of positive integer solutions $x$ and $y$ for $0\leq n\leq 10.$ Moreover, we give all positive integer solutions of the same equation for $0\leq n\leq 10$ in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$. (English) |
Keyword:
|
Diophantine equation |
Keyword:
|
Pell equation |
Keyword:
|
generalized Fibonacci number |
Keyword:
|
generalized Lucas number |
MSC:
|
11B37 |
MSC:
|
11B39 |
MSC:
|
11B50 |
MSC:
|
11B99 |
idZBL:
|
Zbl 06282110 |
idMR:
|
MR3125654 |
DOI:
|
10.1007/s10587-013-0052-y |
. |
Date available:
|
2013-10-07T12:08:41Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143489 |
. |
Reference:
|
[1] Leon, M. J. De: Pell's equations and Pell number triples.Fibonacci Q. 14 (1976), 456-460. MR 0419344 |
Reference:
|
[2] Jacobson, M. J., Williams, H. C.: Solving the Pell Equation.CMS Books in Mathematics. Springer, New York (2009). Zbl 1177.11027, MR 2466979 |
Reference:
|
[3] Jones, J. P.: Representation of solutions of Pell equations using Lucas sequences.Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.) 30 (2003), 75-86. Zbl 1047.11017, MR 2054717 |
Reference:
|
[4] Kalman, D., Mena, R.: The Fibonacci numbers---exposed.Math. Mag. 76 (2003), 167-181. Zbl 1048.11014, MR 2083847, 10.2307/3219318 |
Reference:
|
[5] Keskin, R.: Solutions of some quadratic Diophantine equations.Comput. Math. Appl. 60 (2010), 2225-2230. Zbl 1205.11035, MR 2725312, 10.1016/j.camwa.2010.08.012 |
Reference:
|
[6] Keskin, R., Karaatli, O., Şiar, Z.: On the Diophantine equation $x^{2}-kxy+y^{2}+2^{n}=0$.Miskolc Math. Notes 13 (2012), 375-388. MR 3002637 |
Reference:
|
[7] Keskin, R., Demirtürk, B.: Solutions of some Diophantine equations using generalized Fibonacci and Lucas sequences.Ars Comb. 111 (2013), 161-179. MR 3055272 |
Reference:
|
[8] Marlewski, A., Zarzycki, P.: Infinitely many solutions of the Diophantine equation $x^{2}-kxy+y^{2}+x=0$.Comput. Math. Appl. 47 (2004), 115-121. MR 2062730, 10.1016/S0898-1221(04)90010-7 |
Reference:
|
[9] McDaniel, W. L.: Diophantine representation of Lucas sequences.Fibonacci Q. 33 (1995), 59-63. Zbl 0830.11006, MR 1316283 |
Reference:
|
[10] Melham, R.: Conics which characterize certain Lucas sequences.Fibonacci Q. 35 (1997), 248-251. Zbl 0968.11501, MR 1465839 |
Reference:
|
[11] Nagell, T.: Introduction to Number Theory.John Wiley & Sons, Inc., New York; Almqvist & Wiksell, Stockholm (1951). Zbl 0042.26702, MR 0043111 |
Reference:
|
[12] Ribenboim, P.: My Numbers, My Friends. Popular Lectures on Number Theory.Springer, New York (2000). Zbl 0947.11001, MR 1761897 |
Reference:
|
[13] Robertson, J. P.: Solving the generalized Pell equation $x^{2}-Dy^{2}=N$.http://hometown.aol.com/jpr2718/pell.pdf (2003). |
Reference:
|
[14] Robinowitz, S.: Algorithmic manipulation of Fibonacci identities.Applications of Fibonacci Numbers. 6 (1996), 389-408 G. E. Bergum, et al. Kluwer Acadademic Publishers, Dordrecht. MR 1393473, 10.1007/978-94-009-0223-7_33 |
Reference:
|
[15] Yuan, P., Hu, Y.: On the Diophantine equation $x^{2}-kxy+y^{2}+lx=0$, $l\in \{ 1,2,4\}$.Comput. Math. Appl. 61 (2011), 573-577. Zbl 1217.11031, MR 2764051 |
. |