Previous |  Up |  Next

Article

Title: On the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$ (English)
Author: Keskin, Refik
Author: Şiar, Zafer
Author: Karaatlı, Olcay
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 3
Year: 2013
Pages: 783-797
Summary lang: English
.
Category: math
.
Summary: In this study, we determine when the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$ has an infinite number of positive integer solutions $x$ and $y$ for $0\leq n\leq 10.$ Moreover, we give all positive integer solutions of the same equation for $0\leq n\leq 10$ in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$. (English)
Keyword: Diophantine equation
Keyword: Pell equation
Keyword: generalized Fibonacci number
Keyword: generalized Lucas number
MSC: 11B37
MSC: 11B39
MSC: 11B50
MSC: 11B99
idZBL: Zbl 06282110
idMR: MR3125654
DOI: 10.1007/s10587-013-0052-y
.
Date available: 2013-10-07T12:08:41Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143489
.
Reference: [1] Leon, M. J. De: Pell's equations and Pell number triples.Fibonacci Q. 14 (1976), 456-460. MR 0419344
Reference: [2] Jacobson, M. J., Williams, H. C.: Solving the Pell Equation.CMS Books in Mathematics. Springer, New York (2009). Zbl 1177.11027, MR 2466979
Reference: [3] Jones, J. P.: Representation of solutions of Pell equations using Lucas sequences.Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.) 30 (2003), 75-86. Zbl 1047.11017, MR 2054717
Reference: [4] Kalman, D., Mena, R.: The Fibonacci numbers---exposed.Math. Mag. 76 (2003), 167-181. Zbl 1048.11014, MR 2083847, 10.2307/3219318
Reference: [5] Keskin, R.: Solutions of some quadratic Diophantine equations.Comput. Math. Appl. 60 (2010), 2225-2230. Zbl 1205.11035, MR 2725312, 10.1016/j.camwa.2010.08.012
Reference: [6] Keskin, R., Karaatli, O., Şiar, Z.: On the Diophantine equation $x^{2}-kxy+y^{2}+2^{n}=0$.Miskolc Math. Notes 13 (2012), 375-388. MR 3002637
Reference: [7] Keskin, R., Demirtürk, B.: Solutions of some Diophantine equations using generalized Fibonacci and Lucas sequences.Ars Comb. 111 (2013), 161-179. MR 3055272
Reference: [8] Marlewski, A., Zarzycki, P.: Infinitely many solutions of the Diophantine equation $x^{2}-kxy+y^{2}+x=0$.Comput. Math. Appl. 47 (2004), 115-121. MR 2062730, 10.1016/S0898-1221(04)90010-7
Reference: [9] McDaniel, W. L.: Diophantine representation of Lucas sequences.Fibonacci Q. 33 (1995), 59-63. Zbl 0830.11006, MR 1316283
Reference: [10] Melham, R.: Conics which characterize certain Lucas sequences.Fibonacci Q. 35 (1997), 248-251. Zbl 0968.11501, MR 1465839
Reference: [11] Nagell, T.: Introduction to Number Theory.John Wiley & Sons, Inc., New York; Almqvist & Wiksell, Stockholm (1951). Zbl 0042.26702, MR 0043111
Reference: [12] Ribenboim, P.: My Numbers, My Friends. Popular Lectures on Number Theory.Springer, New York (2000). Zbl 0947.11001, MR 1761897
Reference: [13] Robertson, J. P.: Solving the generalized Pell equation $x^{2}-Dy^{2}=N$.http://hometown.aol.com/jpr2718/pell.pdf (2003).
Reference: [14] Robinowitz, S.: Algorithmic manipulation of Fibonacci identities.Applications of Fibonacci Numbers. 6 (1996), 389-408 G. E. Bergum, et al. Kluwer Acadademic Publishers, Dordrecht. MR 1393473, 10.1007/978-94-009-0223-7_33
Reference: [15] Yuan, P., Hu, Y.: On the Diophantine equation $x^{2}-kxy+y^{2}+lx=0$, $l\in \{ 1,2,4\}$.Comput. Math. Appl. 61 (2011), 573-577. Zbl 1217.11031, MR 2764051
.

Files

Files Size Format View
CzechMathJ_63-2013-3_13.pdf 284.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo