[1] Leon, M. J. De: 
Pell's equations and Pell number triples. Fibonacci Q. 14 (1976), 456-460. 
MR 0419344[2] Jacobson, M. J., Williams, H. C.: 
Solving the Pell Equation. CMS Books in Mathematics. Springer, New York (2009). 
MR 2466979 | 
Zbl 1177.11027[3] Jones, J. P.: 
Representation of solutions of Pell equations using Lucas sequences. Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.) 30 (2003), 75-86. 
MR 2054717 | 
Zbl 1047.11017[6] Keskin, R., Karaatli, O., Şiar, Z.: 
On the Diophantine equation $x^{2}-kxy+y^{2}+2^{n}=0$. Miskolc Math. Notes 13 (2012), 375-388. 
MR 3002637[7] Keskin, R., Demirtürk, B.: 
Solutions of some Diophantine equations using generalized Fibonacci and Lucas sequences. Ars Comb. 111 (2013), 161-179. 
MR 3055272[9] McDaniel, W. L.: 
Diophantine representation of Lucas sequences. Fibonacci Q. 33 (1995), 59-63. 
MR 1316283 | 
Zbl 0830.11006[10] Melham, R.: 
Conics which characterize certain Lucas sequences. Fibonacci Q. 35 (1997), 248-251. 
MR 1465839 | 
Zbl 0968.11501[11] Nagell, T.: 
Introduction to Number Theory. John Wiley & Sons, Inc., New York; Almqvist & Wiksell, Stockholm (1951). 
MR 0043111 | 
Zbl 0042.26702[12] Ribenboim, P.: 
My Numbers, My Friends. Popular Lectures on Number Theory. Springer, New York (2000). 
MR 1761897 | 
Zbl 0947.11001[14] Robinowitz, S.: 
Algorithmic manipulation of Fibonacci identities. Applications of Fibonacci Numbers. 6 (1996), 389-408 G. E. Bergum, et al. Kluwer Acadademic Publishers, Dordrecht. 
DOI 10.1007/978-94-009-0223-7_33 | 
MR 1393473[15] Yuan, P., Hu, Y.: 
On the Diophantine equation $x^{2}-kxy+y^{2}+lx=0$, $l\in \{ 1,2,4\}$. Comput. Math. Appl. 61 (2011), 573-577. 
MR 2764051 | 
Zbl 1217.11031