Previous |  Up |  Next

Article

Title: Semilinear fractional order integro-differential equations with infinite delay in Banach spaces (English)
Author: Aissani, Khalida
Author: Benchohra, Mouffak
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 49
Issue: 2
Year: 2013
Pages: 105-117
Summary lang: English
.
Category: math
.
Summary: This paper concerns the existence of mild solutions for fractional order integro-differential equations with infinite delay. Our analysis is based on the technique of Kuratowski’s measure of noncompactness and Mönch’s fixed point theorem. An example to illustrate the applications of main results is given. (English)
Keyword: semilinear differential equations
Keyword: Caputo fractional derivative
Keyword: mild solution
Keyword: measure of noncompactness
Keyword: fixed point
Keyword: semigroup
Keyword: Banach space
MSC: 26A33
MSC: 34G20
MSC: 34K30
MSC: 34K37
idZBL: Zbl 06321152
idMR: MR3118867
DOI: 10.5817/AM2013-2-105
.
Date available: 2013-10-14T13:41:57Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143498
.
Reference: [1] Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in Fractional Differential Equations.Springer, New York, 2012. Zbl 1273.35001, MR 2962045
Reference: [2] Agarwal, R. P., Belmekki, M., Benchohra, M.: A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative.Adv. Differential Equations 2009 (2009), 1–47, Article ID 981728. Zbl 1182.34103, MR 2505633
Reference: [3] Agarwal, R. P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions.Acta Appl. Math. 109 (2010), 973–1033. Zbl 1198.26004, MR 2596185, 10.1007/s10440-008-9356-6
Reference: [4] Agarwal, R. P., Meehan, M., O’Regan, D.: Fixed Point Theory and Applications.Cambridge University Press, 2001. Zbl 0960.54027, MR 1825411, 10.1017/CBO9780511543005.008
Reference: [5] Appell, J. M., Kalitvin, A. S., Zabrejko, P. P.: Partial Integral Operators and Integrodifferential Equations.vol. 230, Marcel Dekker, Inc., New York, 2000. MR 1760093
Reference: [6] Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J.: Fractional Calculus Models and Numerical Methods.World Scientific Publishing, New York, 2012. Zbl 1248.26011, MR 2894576
Reference: [7] Banaś, J., Goebel, K.: Measures of Noncompactness in Banach Spaces.Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 1980. MR 0591679
Reference: [8] Benchohra, M., Henderson, J., Ntouyas, S., Ouahab, A.: Existence results for fractional order functional differential equations with infinite delay.J. Math. Anal. Appl. 338 (2008), 1340–1350. Zbl 1209.34096, MR 2386501, 10.1016/j.jmaa.2007.06.021
Reference: [9] Bothe, D.: Multivalued perturbations of $m$–accretive differential inclusions.Israel J. Math. 108 (1998), 109–138. Zbl 0922.47048, MR 1669396, 10.1007/BF02783044
Reference: [10] Case, K. M., Zweifel, P. F.: Linear Transport Theory.Addison-Wesley, Reading, MA, 1967. Zbl 0162.58903, MR 0225547
Reference: [11] Chandrasekhe, S.: Radiative Transfer.Dover Publications, New York, 1960. MR 0111583
Reference: [12] Corduneanu, C., Lakshmikantham, V.: Equations with unbounded delay.Nonlinear Anal. 4 (1980), 831–877. Zbl 0449.34048, MR 0586852, 10.1016/0362-546X(80)90001-2
Reference: [13] Diethelm, K.: The Analysis of Fractional Differential Equations.Springer, Berlin, 2010. Zbl 1215.34001, MR 2680847
Reference: [14] El–Borai, M.: Some probability densities and fundamental solutions of fractional evolution equations.Chaos, Solitons & Fractals 14 (2002), 433–440. Zbl 1005.34051, MR 1903295, 10.1016/S0960-0779(01)00208-9
Reference: [15] Hale, J. K., Kato, J.: Phase space for retarded equations with infinite delay.Funkcial. Ekvac. 21 (1) (1978), 11–41. Zbl 0383.34055, MR 0492721
Reference: [16] Hale, J. K., Lunel, S. Verduyn: Introduction to Functional–Differential Equations.Applied Mathematical Sciences, vol. 99, Springer-Verlag, New York, 1993. MR 1243878
Reference: [17] Heinz, H.–P.: On the behaviour of measures of noncompactness with respect to differentiation and integration of vector–valued functions.Nonlinear Anal. 7 (12) (1983), 1351–1371. Zbl 0528.47046, MR 0726478, 10.1016/0362-546X(83)90006-8
Reference: [18] Hilfer, R.: Applications of fractional calculus in physics.Singapore, World Scientific, 2000. Zbl 0998.26002, MR 1890104
Reference: [19] Hino, Y., Murakami, S., Naito, T.: Functional Differential Equations with Infinite Delay.Lecture Notes in Mathematics, vol. 1473, Springer-Verlag, Berlin, 1991. Zbl 0732.34051, MR 1122588
Reference: [20] Kilbas, A. A., Srivastava, Hari M., Trujillo, Juan J.: Theory and Applications of Fractional Differential Equations.Elsevier Science B.V., Amsterdam, 2006. Zbl 1092.45003, MR 2218073
Reference: [21] Kolmanovskii, V., Myshkis, A.: Introduction to the Theory and Applications of Functional–Differential Equations.Kluwer Academic Publishers, Dordrecht, 1999. Zbl 0917.34001, MR 1680144
Reference: [22] Lakshmikantham, V., Wen, L., Zhang, B.: Theory of Differential Equations with Unbounded Delay.Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1994. Zbl 0823.34069, MR 1319339
Reference: [23] Li, F., Zhang, J.: Existence of mild solutions to fractional integrodifferential equations of neutral type with infinite delay.Adv. Differential Equations 2011 (2011), 1–15, Article ID 963463. Zbl 1213.45008, MR 2774252
Reference: [24] Liang, J., Xiao, T.–J., van Casteren, J.: A note on semilinear abstract functional differential and integrodifferential equations with infinite delay.Appl. Math. Lett. 17 (4) (2004), 473–477. Zbl 1082.34543, MR 2045755, 10.1016/S0893-9659(04)90092-4
Reference: [25] Mainardi, F., Paradisi, P., Gorenflo, R.: Probability distributions generated by fractional diffusion equations.Econophysics: An Emerging Science (Kertesz, J., Kondor, I., eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.
Reference: [26] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations.John Wiley, New York, 1993. MR 1219954
Reference: [27] Mönch, H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces.Nonlinear Anal. 4 (1980), 985–999. MR 0586861, 10.1016/0362-546X(80)90010-3
Reference: [28] Mophou, G. M., Nakoulima, O., N’Guérékata, G. M.: Existence results for some fractional differential equations with nonlocal conditions.Nonlinear Stud. 17 (2010), 15–22. Zbl 1204.34010, MR 2647799
Reference: [29] Mophou, G. M., N’Guérékata, G. M.: Existence of mild solution for some fractional differential equations with nonlocal conditions.Semigroup Forum 79 (2009), 315–322. MR 2538728, 10.1007/s00233-008-9117-x
Reference: [30] Obukhovskii, V., Yao, J.–C.: Some existence results for fractional functional differential equations.Fixed Point Theory 11 (2010), 85–96. Zbl 1202.34141, MR 2656008
Reference: [31] Podlubny, I.: Fractional Differential Equations.Academic Press, San Diego, 1999. Zbl 0924.34008, MR 1658022
Reference: [32] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives. Theory and Applications.Gordon and Breach, Yverdon, 1993. Zbl 0818.26003, MR 1347689
Reference: [33] Tarasov, V. E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media.Springer, Heidelberg; Higher Education Press, Beijing, 2010. MR 2796453
Reference: [34] Wu, J.: Theory and Applications of Partial Functional Differential Equations.Springer Verlag, New York, 1996. Zbl 0870.35116, MR 1415838
.

Files

Files Size Format View
ArchMathRetro_049-2013-2_3.pdf 484.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo