Previous |  Up |  Next

Article

Title: CLO spaces and central maximal operators (English)
Author: Guzmán-Partida, Martha
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 49
Issue: 2
Year: 2013
Pages: 119-124
Summary lang: English
.
Category: math
.
Summary: We consider central versions of the space $\operatorname{BLO}$ studied by Coifman and Rochberg and later by Bennett, as well as some natural relations with a central version of a maximal operator. (English)
Keyword: central mean oscillation
Keyword: central maximal function
MSC: 42B25
MSC: 42B35
idZBL: Zbl 06321153
idMR: MR3118868
DOI: 10.5817/AM2013-2-119
.
Date available: 2013-10-14T13:42:47Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143499
.
Reference: [1] Alvarez, J.: The distribution function in the Morrey space.Proc. Amer. Math. Soc. 83 (1981), 693–699. Zbl 0478.46025, MR 0630039, 10.1090/S0002-9939-1981-0630039-0
Reference: [2] Alvarez, J., Guzmán–Partida, M., Lakey, J.: Spaces of bounded $\lambda $–central mean oscillation, Morrey spaces, and $\lambda $–central Carleson measures.Collect. Math. 51 (2000), 1–47. Zbl 0948.42013, MR 1757848
Reference: [3] Bennett, C.: Another characterization of BLO.Proc. Amer. Math. Soc. 85 (1982), 552–556. Zbl 0512.42022, MR 0660603, 10.1090/S0002-9939-1982-0660603-5
Reference: [4] Chen, Y. Z., Lau, K. S.: On some new classes of Hardy spaces.J. Funct. Anal. 84 (1989), 255–278. MR 1001460, 10.1016/0022-1236(89)90097-9
Reference: [5] Coifman, R. R., Rochberg, R.: Another characterization of BMO.Proc. Amer. Math. Soc. 79 (1980), 249–254. Zbl 0432.42016, MR 0565349, 10.1090/S0002-9939-1980-0565349-8
Reference: [6] García–Cuerva, J.: Hardy spaces and Beurling algebras.J. London Math. Soc. 39 (1989), 499–513. Zbl 0681.42014, MR 1002462, 10.1112/jlms/s2-39.3.499
Reference: [7] Lin, H., Nakai, E., Yang, D.: Boundedness of Lusin–area and $g_{\lambda }^{\ast }$ functions on localized BMO spaces over doubling metric measure spaces.Bull. Sci. Math. 135 (2011), 59–88. MR 2764953, 10.1016/j.bulsci.2010.03.004
Reference: [8] Lin, H., Yang, D.: Spaces of type BLO on non–homogeneous metric measure spaces.Front. Math. China 6 (2011), 271–292. MR 2780892, 10.1007/s11464-011-0098-9
Reference: [9] Liu, L., Yang, D.: $BLO$ spaces associated with the Ornstein–Uhlenbeck operator.Bull. Sci. Math. 132 (2008), 633–649. Zbl 1158.42013, MR 2474485, 10.1016/j.bulsci.2008.08.003
Reference: [10] Lu, S., Yang, D.: The central BMO spaces and Littlewood–Paley operators.J. Approx. Theory Appl. 11 (1995), 72–94. Zbl 0857.42009, MR 1370776
Reference: [11] Lu, S., Yang, D., Hu, G.: Herz Type Spaces and Their Applications.Science Press, Beijing, 2008.
Reference: [12] Yang, Da., Yang, Do., Hu, G.: The Hardy Space $H^{1}$ with Non–doubling Measures and Their Applications.Lecture Notes in Math., vol. 2084, Springer–Verlag, Berlin, 2013. MR 3157341
.

Files

Files Size Format View
ArchMathRetro_049-2013-2_4.pdf 443.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo