Previous |  Up |  Next

Article

Title: Stabilities of F-Yang-Mills fields on submanifolds (English)
Author: Jia, Gao-Yang
Author: Zhou, Zhen-Rong
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 49
Issue: 2
Year: 2013
Pages: 125-139
Summary lang: English
.
Category: math
.
Summary: In this paper, we define an $F$-Yang-Mills functional, and hence $F$-Yang-Mills fields. The first and the second variational formulas are calculated, and the stabilities of $F$-Yang-Mills fields on some submanifolds of the Euclidean spaces and the spheres are investigated, and hence the theories of Yang-Mills fields are generalized in this paper. (English)
Keyword: $F$-Yang-Mills field
Keyword: stability
MSC: 58E20
idZBL: Zbl 06321154
idMR: MR3118869
DOI: 10.5817/AM2013-2-125
.
Date available: 2013-10-14T13:43:15Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143500
.
Reference: [1] Bourguignon, J.—P., Lawson, H. B.: Stability and isolation phenomena for Yang–Mills fields.Comm. Math. Phys. 79 (2) (1981), 189–230. Zbl 0475.53060, MR 0612248, 10.1007/BF01942061
Reference: [2] Bourguignon, J.–P., Lawson, H. B., Simons, J.: Stability and gap phenomena for Yang-Mills fields.Proc. Acad. Sci. U.S.A. 76 (1979), 1550–1553. Zbl 0408.53023, MR 0526178, 10.1073/pnas.76.4.1550
Reference: [3] Chen, Q., Zhou, Z.–R.: On gap properties and instabilities of p-Yang-Mills fields.Canad. J. Math. 59 (6) (2007), 1245–1259. Zbl 1131.58010, MR 2363065, 10.4153/CJM-2007-053-x
Reference: [4] Sibner, L. M., Sibner, R. J., Uhlenbeck, K.: [Solutions to Yang–Mills equations that are not self–dual].Proc. Natl. Acad. Sci. USA 86 (1989), 8610–8613. Zbl 0731.53031, MR 1023811, 10.1073/pnas.86.22.8610
Reference: [5] Xin, Y. L.: Instability theorems of Yang-Mills fields.Acta Math. Sci. 3 (1) (1983), 103–112. Zbl 0543.58018, MR 0741362
.

Files

Files Size Format View
ArchMathRetro_049-2013-2_5.pdf 488.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo