Previous |  Up |  Next

Article

Title: Two-level stabilized nonconforming finite element method for the Stokes equations (English)
Author: Su, Haiyan
Author: Huang, Pengzhan
Author: Feng, Xinlong
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940
Volume: 58
Issue: 6
Year: 2013
Pages: 643-656
Summary lang: English
.
Category: math
.
Summary: In this article, we present a new two-level stabilized nonconforming finite elements method for the two dimensional Stokes problem. This method is based on a local Gauss integration technique and the mixed nonconforming finite element of the $NCP_{1}-P_{1}$ pair (nonconforming linear element for the velocity, conforming linear element for the pressure). The two-level stabilized finite element method involves solving a small stabilized Stokes problem on a coarse mesh with mesh size $H$ and a large stabilized Stokes problem on a fine mesh size $h=H/3$. Numerical results are presented to show the convergence performance of this combined algorithm. (English)
Keyword: Stokes problem; two-level method; nonconforming finite element; error estimate; numerical result
MSC: 65M12
MSC: 65M60
MSC: 76D07
idZBL: Zbl 06312919
idMR: MR3162752
DOI: 10.1007/s10492-013-0032-4
.
Date available: 2013-11-09T20:16:24Z
Last updated: 2016-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/143503
.
Reference: [1] Bochev, P. B., Dohrmann, C. R., Gunzburger, M. D.: Stabilization of low-order mixed finite elements for the Stokes equations.SIAM J. Numer. Anal 44 (2006), 82-101. Zbl 1145.76015, MR 2217373, 10.1137/S0036142905444482
Reference: [2] Ervin, V., Layton, W., Maubach, J.: A posteriori error estimators for a two-level finite element method for the Navier-Stokes equations.Numer. Methods Partial Differ. Equations 12 (1996), 333-346. Zbl 0852.76039, MR 1388444, 10.1002/(SICI)1098-2426(199605)12:3<333::AID-NUM4>3.0.CO;2-P
Reference: [3] Feng, X., Kim, I., Nam, H., Sheen, D.: Locally stabilized $P_{1}$-nonconforming quadrilateral and hexahedral finite element methods for the Stokes equations.J. Comput. Appl. Math. 236 (2011), 714-727. Zbl 1233.65088, MR 2853496, 10.1016/j.cam.2011.06.009
Reference: [4] He, Y., Li, K.: Two-level stabilized finite element methods for the steady Navier-Stokes problem.Computing 74 (2005), 337-351. Zbl 1099.65111, MR 2149343, 10.1007/s00607-004-0118-7
Reference: [5] Hecht, F., al., et: FREEFEM$++$, version 2.3-3 [online].Available from: http://www.freefem.org (2008).
Reference: [6] Huang, P., He, Y., Feng, X.: Numerical investigations on several stabilized finite element methods for the Stokes eigenvalue problem.Math. Probl. Eng. 2011 (2011), Article ID: 745908. Zbl 1235.74286, MR 2826898
Reference: [7] Layton, W.: A two level discretization method for the Navier-Stokes equations.Comput. Math. Appl. 26 (1993), 33-38. Zbl 0773.76042, MR 1220955, 10.1016/0898-1221(93)90318-P
Reference: [8] Layton, W., Lenferink, W.: Two-level Picard and modified Picard methods for the Navier-Stokes equations.Appl. Math. Comput. 69 (1995), 263-274. Zbl 0828.76017, MR 1326676, 10.1016/0096-3003(94)00134-P
Reference: [9] Layton, W., Tobiska, L.: A two-level method with backtracking for the Navier-Stokes equations.SIAM J. Numer. Anal. 35 (1998), 2035-2054. Zbl 0913.76050, MR 1639994, 10.1137/S003614299630230X
Reference: [10] Li, J., Chen, Z.: A new local stabilized nonconforming finite element method for the Stokes equations.Computing 82 (2008), 157-170. Zbl 1155.65101, MR 2421582, 10.1007/s00607-008-0001-z
Reference: [11] Li, J., He, Y.: A stabilized finite element method based on two local Gauss integrations for the Stokes equations.J. Comput. Appl. Math. 214 (2008), 58-65. Zbl 1132.35436, MR 2391672, 10.1016/j.cam.2007.02.015
Reference: [12] Xu, J.: A novel two-grid method for semilinear elliptic equations.SIAM J. Sci. Comput. 15 (1994), 231-237. Zbl 0795.65077, MR 1257166, 10.1137/0915016
Reference: [13] Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs.SIAM J. Numer. Anal. 33 (1996), 1759-1777. Zbl 0860.65119, MR 1411848, 10.1137/S0036142992232949
Reference: [13] Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs.SIAM J. Numer. Anal. 33 (1996), 1759-1777. Zbl 0860.65119, MR 1411848, 10.1137/S0036142992232949
.

Files

Files Size Format View
AplMat_58-2013-6_2.pdf 242.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo