Previous |  Up |  Next

Article

Title: On extensions of orthosymmetric lattice bimorphisms (English)
Author: Toumi, Mohamed Ali
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 138
Issue: 4
Year: 2013
Pages: 425-437
Summary lang: English
.
Category: math
.
Summary: In the paper we prove that every orthosymmetric lattice bilinear map on the cartesian product of a vector lattice with itself can be extended to an orthosymmetric lattice bilinear map on the cartesian product of the Dedekind completion with itself. The main tool used in our proof is the technique associated with extension to a vector subspace generated by adjoining one element. As an application, we prove that if $(A,\ast )$ is a commutative $d$-algebra and $A^{\mathfrak {d}}$ its Dedekind completion, then, $A^{\mathfrak {d}}$ can be equipped with a $d$-algebra multiplication that extends the multiplication of $A$. \endgraf Moreover, we indicate an error made in the main result of the paper: M. A. Toumi, Extensions of orthosymmetric lattice bimorphisms, Proc. Amer. Math. Soc. 134 (2006), 1615–1621. (English)
Keyword: $d$-algebra
Keyword: $f$-algebra
Keyword: lattice homomorphism
Keyword: lattice bimorphism
MSC: 06F25
MSC: 47B65
idZBL: Zbl 06260043
idMR: MR3231097
DOI: 10.21136/MB.2013.143515
.
Date available: 2013-11-09T20:27:25Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143515
.
Reference: [1] Aliprantis, C. D., Burkinshaw, O.: Positive Operators.Pure and Applied Mathematics 119 Academic Press, Orlando (1985). Zbl 0608.47039, MR 0809372
Reference: [2] Huijsmans, S. J. Bernau,C. B.: Almost $f$-algebras and $d$-algebras.Math. Proc. Camb. Philos. Soc. 107 (1990), 287-308. Zbl 0707.06009, MR 1027782, 10.1017/S0305004100068560
Reference: [3] Boulabiar, K., Toumi, M. A.: Lattice bimorphisms on $f$-algebras.Algebra Univers. 48 (2002), 103-116. Zbl 1059.06013, MR 1930035
Reference: [4] Boulabiar, K.: Extensions of orthosymmetric lattice bilinear maps revisited.Proc. Am. Math. Soc. 135 (2007), 2007-2009 (electronic). MR 2299473, 10.1090/S0002-9939-07-08787-4
Reference: [5] Buskes, G., Rooij, A. van: Almost $f$-algebras: Commutativity and Cauchy Schwartz inequality.Positivity 4 (2000), 227-231. MR 1797125, 10.1023/A:1009826510957
Reference: [6] Chil, E.: The Dedekind completion of a $d$-algebra.Positivity 8 (2004), 257-267. MR 2120121, 10.1007/s11117-004-1894-1
Reference: [7] Fuchs, L.: Partially Ordered Algebraic Systems.Pergamon Press, Oxford (1963). Zbl 0137.02001, MR 0171864
Reference: [8] Grobler, J. J., Labuschagne, C. C. A.: The tensor product of Archimedean ordered vector spaces.Math. Proc. Camb. Philos. Soc. 104 (1988), 331-345. Zbl 0663.46006, MR 0948918, 10.1017/S0305004100065506
Reference: [9] Huijsmans, C. B.: Lattice-odered algebras and $f$-algebras: a survey.Positive Operators, Riesz Spaces, and Economics Proc. Conf., Pasadena/CA (USA) 1990, Stud. Econ. Theory 2 151-169 Springer, Berlin (1991). MR 1307423, 10.1007/978-3-642-58199-1_7
Reference: [10] Lipecki, Z.: Extension of vector lattice homomorphisms revisited.Indag. Math. 47 (1985), 229-233. Zbl 0589.46002, MR 0799083, 10.1016/1385-7258(85)90010-1
Reference: [11] Luxemburg, W. A. J., Zaanen, A. C.: Riesz Spaces. Vol. I.North-Holland Mathematical Library North-Holland Publishing Company, Amsterdam (1971). Zbl 0231.46014, MR 0511676
Reference: [12] Pagter, B. De: $f$-Algebras and Orthomorphisms.Thesis Leiden (1981).
Reference: [13] Toumi, M. A.: Extensions of orthosymmetric lattice bimorphisms.Proc. Am. Math. Soc. 134 (2006), 1615-1621. Zbl 1100.06013, MR 2204271, 10.1090/S0002-9939-05-08142-6
Reference: [14] Zaanen, A. C.: Riesz Spaces II.North-Holland Mathematical Library 30 North-Holland Publishing Company, Amsterdam (1983). Zbl 0519.46001, MR 0704021
.

Files

Files Size Format View
MathBohem_138-2013-4_7.pdf 259.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo