Previous |  Up |  Next

Article

Title: The $n$-dual space of the space of $p$-summable sequences (English)
Author: Pangalela, Yosafat E. P.
Author: Gunawan, Hendra
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 138
Issue: 4
Year: 2013
Pages: 439-448
Summary lang: English
.
Category: math
.
Summary: In the theory of normed spaces, we have the concept of bounded linear functionals and dual spaces. Now, given an $n$-normed space, we are interested in bounded multilinear $n$-functionals and $n$-dual spaces. The concept of bounded multilinear $n$-functionals on an $n$-normed space was initially intoduced by White (1969), and studied further by Batkunde et al., and Gozali et al. (2010). In this paper, we revisit the definition of bounded multilinear $n$-functionals, introduce the concept of $n$-dual spaces, and then determine the $n$-dual spaces of $\ell^p$ spaces, when these spaces are not only equipped with the usual norm but also with some $n$-norms. (English)
Keyword: $\ell^p$ space
Keyword: $n$-normed space
Keyword: $n$-dual space
MSC: 46B20
MSC: 46B99
MSC: 46C05
MSC: 46C15
MSC: 46C99
idZBL: Zbl 06260044
idMR: MR3231098
DOI: 10.21136/MB.2013.143516
.
Date available: 2013-11-09T20:28:09Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143516
.
Reference: [1] Batkunde, H., Gunawan, H., Pangalela, Y. E. P.: Bounded linear functionals on the $n$-normed space of $p$-summable sequences.(to appear) in Acta Univ. M. Belii Ser. Math.
Reference: [2] Gähler, S.: Investigations on generalized $m$-metric spaces. I.German Math. Nachr. 40 (1969), 165-189.
Reference: [3] Gähler, S.: Investigations on generalized $m$-metric spaces. II.German Math. Nachr. 40 (1969), 229-264.
Reference: [4] Gähler, S.: Investigations on generalized $m$-metric spaces. III.German Math. Nachr. 41 (1969), 23-26.
Reference: [5] Gozali, S. M., Gunawan, H., Neswan, O.: On $n$-norms and bounded $n$-linear functionals in a Hilbert space.Ann. Funct. Anal. AFA 1 (2010), 72-79, electronic only. Zbl 1208.46006, MR 2755461
Reference: [6] Gunawan, H.: The space of $p$-summable sequences and its natural $n$-norm.Bull. Aust. Math. Soc. 64 (2001), 137-147. Zbl 1002.46007, MR 1848086, 10.1017/S0004972700019754
Reference: [7] Gunawan, H., Setya-Budhi, W., Mashadi, M., Gemawati, S.: On volumes of $n$-dimensional parallelepipeds in $\ell^p$ spaces.Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. 16 (2005), 48-54. MR 2164275
Reference: [8] Kreyszig, E.: Introductory Functional Analysis with Applications.Wiley Classics Library. John Wiley & Sons New York (1978). Zbl 0368.46014, MR 0467220
Reference: [9] Miličić, P. M.: On the Gram-Schmidt projection in normed spaces.Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. 4 (1993), 89-96. Zbl 0819.46010, MR 1295606
Reference: [10] Pangalela, Y. E. P.: Representation of linear 2-functionals on space $\ell^p$.Indonesian Master Thesis, Institut Teknologi Bandung (2012).
Reference: [11] White, A. G.: $2$-Banach spaces.Math. Nachr. 42 (1969), 43-60. Zbl 0185.20003, MR 0257716, 10.1002/mana.19690420104
Reference: [12] Wibawa-Kusumah, R. A., Gunawan, H.: Two equivalent $n$-norms on the space of $p$-summable sequences.Period. Math. Hung. 67 (2013), 63-69. MR 3090825, 10.1007/s10998-013-6129-4
.

Files

Files Size Format View
MathBohem_138-2013-4_8.pdf 251.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo